首页> 外文期刊>Journal of numerical mathematics >Stabilisation yields strong convergence of macroscopic magnetisation vectors for micromagnetics without exchange energy
【24h】

Stabilisation yields strong convergence of macroscopic magnetisation vectors for micromagnetics without exchange energy

机译:稳定化可产生微磁性宏观磁化矢量的强收敛性,而无需交换能量

获取原文
获取原文并翻译 | 示例

摘要

The convexifled Landau-Lifshitz minimisation problem in micromagnetics leads to a degenerate variational problem. Therefore strong convergence of finite element approximations cannot be expected in general. This paper introduces a stabilized finite element discretization which allows for surprising the strong convergence of the discrete magnetisation fields with reduced convergence order for a uniaxial model problem. This yields a convergent method for the approximation of the Young measure which characterises the enforced microstructure for the generalized solution of the non-relaxed Landau-Lifshitz problem.
机译:微磁学中凸凸的Landau-Lifshitz极小化问题导致退化的变分问题。因此,通常不能期望有限元近似的强收敛性。本文介绍了一种稳定的有限元离散化方法,它可以使单轴模型问题的离散磁化场具有强收敛性,并且收敛阶数减小。这产生了一种用于杨氏测度逼近的收敛方法,该方法表征了非松弛Landau-Lifshitz问题的广义解的强制微观结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号