首页> 外文期刊>Journal of network and systems management >Building Autonomic Elements from Video-Streaming Servers
【24h】

Building Autonomic Elements from Video-Streaming Servers

机译:从视频流服务器构建自主元素

获取原文
获取原文并翻译 | 示例

摘要

HTTP Streaming is nowadays the main approach for delivering video-streaming on the Internet. As a consequence of that, the widely deployed HTTP infrastructures face new challenges posed by the sensitivity of video-streaming users to service quality degradation and the specificities of video-streaming workloads. Performance issues represent one main class of problems in the server infrastructure that can result into a significant deterioration of the end-users' quality of experience (QoE), proportional to the upfront time spent by them watching the videos. This paper addresses the development of autonomic HTTP Streaming servers organized into Autonomic Elements (AEs), the building blocks of Autonomic Computing (AC) systems. AEs are structured using container-based virtualization and are provided with monitoring, failure prediction, failure diagnosis and repair features. These features are incorporated into SHStream, a self-healing framework developed by us. SHStream relies on online learning algorithms to build and evaluate classification models dynamically for prediction and diagnosis of performance anomalies. The results of our experimental analysis have shown that: (1) failure prediction can be performed with approximately of precision; (2) the diagnosis activity can localize and identify the resource responsible for performance failures, without misclassifications; (3) the classifiers' performance stabilizes using a small number of learning instances; and (4) container-based virtualization technologies enable recovery times shorter than 1 s through rebooting and shorter than 3 s using server migration techniques.
机译:如今,HTTP流是在Internet上交付视频流的主要方法。结果,广泛部署的HTTP基础结构面临着新的挑战,这些挑战是视频流用户对服务质量下降的敏感性以及视频流工作负载的特殊性所造成的。性能问题代表服务器基础结构中的一类主要问题,可导致最终用户的体验质量(QoE)显着下降,与他们观看视频所花费的前期时间成比例。本文介绍了组织为自主元素(AE),自主计算(AC)系统的构建块的自主HTTP流服务器的开发。 AE使用基于容器的虚拟化进行构造,并具有监视,故障预测,故障诊断和修复功能。这些功能已整合到我们开发的自我修复框架SHStream中。 SHStream依靠在线学习算法来动态构建和评估分类模型,以预测和诊断性能异常。我们的实验分析结果表明:(1)故障预测可以近似精确地进行; (2)诊断活动可以定位和识别造成性能故障的资源,而不会造成错误分类; (3)使用少量的学习实例来稳定分类器的性能; (4)基于容器的虚拟化技术通过重新启动使恢复时间短于1秒,而使用服务器迁移技术的恢复时间短于3秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号