首页> 外文期刊>Journal of network and computer applications >Application-aware resource allocation and data management for MEC-assisted IoT service providers
【24h】

Application-aware resource allocation and data management for MEC-assisted IoT service providers

机译:用于MEC辅助物联网服务提供商的应用程序感知资源分配和数据管理

获取原文
获取原文并翻译 | 示例

摘要

To support the growing demand for data-intensive and low-latency IoT applications, Multi-Access Edge Computing (MEC) is emerging as an effective edge-computing approach enabling the execution of delay-sensitive processing tasks close to end-users. However, most of the existing works on resource allocation and service placement in MEC systems overlook the unique characteristics of new IoT use cases. For instance, many IoT applications require the periodic execution of computing tasks on real-time data streams that originate from devices dispersed over a wide area. Thus, users requesting IoT services are typically distant from the data producers. To fill this gap, the contribution of this work is two-fold. Firstly, we propose a MEC-compliant architectural solution to support the operation of multiple IoT service providers over a common MEC platform deployment, which enables the steering and shaping of IoT data transport within the platform. Secondly, we model the problem of service placement and data management in the proposed MEC-based solution taking into account the dependencies at the data level between IoT services and sensing resources. Our model also considers that caches can be deployed on MEC hosts, to allow the sharing of the same data between different IoT services with overlapping geographical scope, and provides support for IoT services with heterogeneous QoS requirements, such as different frequencies of periodic task execution. Due to the complexity of the optimisation problem, a heuristic algorithm is proposed using linear relaxation and rounding techniques. Extensive simulation results demonstrate the efficiency of the proposed approach, especially when traffic demands generated by the service requests are not uniform.
机译:为了支持数据密集型和低延迟的IoT应用的日益增长的需求,多路访问边缘计算(MEC)正在成为一种有效的边缘计算方法使得能够对延迟敏感的处理任务的执行接近最终用户。然而,大多数在MEC系统资源分配和服务放置在现有的作品忽视的新的物联网应用案例的独特特点。例如,很多物联网应用需要的计算任务的实时数据定期执行流,从分散在广域设备发起。因此,用户请求物联网服务通常从数据生产者遥远。为了填补这一空白,这项工作的贡献是双重的。首先,我们提出了一个MEC兼容的架构解决方案,以支持在一个共同的平台,MEC部署,使转向和平台内的物联网数据传输的塑造多个物联网服务供应商的操作。其次,我们在模型中提出的基于MEC的解决方案考虑到在物联网服务和感测资源之间的数据级的依赖性服务布局和数据管理的问题。我们的模型也认为,高速缓存可以部署在MEC的主机,让不同的物联网服务之间的相同数据的重叠地域范围的共享,并提供了与异构QoS要求,比如定期执行任务的不同频率的物联网服务的支持。由于优化问题的复杂性,启发式算法是使用线性松弛和四舍五入技术建议。大量的仿真结果表明,该方法的效率,特别是当服务请求产生的流量需求并不统一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号