首页> 外文期刊>Journal of network and computer applications >Proactive tasks management for Pervasive Computing Applications
【24h】

Proactive tasks management for Pervasive Computing Applications

机译:主动任务管理普及计算应用程序

获取原文
获取原文并翻译 | 示例

摘要

Current advances in the Internet of Things (IoT) and Edge Computing (EC) involve numerous devices/nodes present at both 'layers' being capable of performing simple processing activities close to end users. This approach targets to limit the latency that users face when consuming the provided services. The minimization of the latency requires for novel techniques that deliver efficient schemes for tasks management at the edge infrastructure and the management of the uncertainty related to the status of edge nodes during the decision making as proposed in this paper. Tasks should be executed in the minimum time especially when we aim to support real time applications. In this paper, we propose a new model for the proactive management of tasks' allocation to provide a decision making model that results the best possible node where every task should be executed. A task can be executed either locally at the node where it is initially reported or in a peer node, if this is more efficient. We focus on the management of the uncertainty over the characteristics of peer nodes when the envisioned decisions should be realized. The proposed model aims at providing the best possible action for any incoming task. For such purposes, we adopt an unsupervised machine learning technique. We present the problem under consideration and specific formulations accompanied by the proposed solution. Our extensive experimental evaluation with synthetic and real data targets to reveal the advantages of the proposed scheme.
机译:电流在观光噪声比(IoT)和边缘计算(EC)的因特网的发展涉及众多的设备/节点存在于两个“层次”能够向终端用户靠近执行简单的处理活动。这种做法的目标,以限制用户消费提供服务时遇到的延迟。延迟最小化需要在此提出,可提供在边缘基础设施的任务管理和决策过程中涉及到边缘节点的状态的不确定性的管理效率方案的新技术。任务应该特别是当我们的目标是支持实时应用的最短时间执行。在本文中,我们提出了任务的分配的主动管理提供了决策模型的新模型的结果,每一个任务应该执行的最佳节点。任务可以在本地在其被最初报告的节点或在对等节点中执行,如果这是更有效的。我们专注于在对等节点的特性的不确定性的管理时所设想的决定,应当认识。该模型旨在为任何呼入任务提供最佳可能的行动。对于这样的目的,我们采用了一种无监督的机器学习技术。我们下伴随提出的解决方案的考虑和具体配方目前的问题。我们有合成和实际数据目标广泛的实验评估,以揭示该方案的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号