首页> 外文期刊>Journal of network and computer applications >A comprehensive survey and taxonomy of the SVM-based intrusion detection systems
【24h】

A comprehensive survey and taxonomy of the SVM-based intrusion detection systems

机译:基于SVM的入侵检测系统的综合调查与分类

获取原文
获取原文并翻译 | 示例

摘要

The increasing number of security attacks have inspired researchers to employ various classifiers, such as support vector machines (SVMs), to deal with them in Intrusion detection systems (IDSs). This paper presents a comprehensive study and investigation of the SVM-based intrusion detection and feature selection systems proposed in the literature. It first presents the essential concepts and background knowledge about security attacks, IDS, and SVM classifiers. It then provides a taxonomy of the SVM-based IDS schemes and describes how they have adapted numerous types of SVM classifiers in detecting various types of anomalies and intrusions. Moreover, it discusses the main contributions of the investigated schemes and highlights the algorithms and techniques combined with the SVM to enhance its detection rate and accuracy. Finally, different properties and limitations of the SVM-based IDS schemes are discussed.
机译:越来越多的安全攻击已经启发了研究人员才能采用各种分类器,例如支持向量机(SVM),以在入侵检测系统(IDS)中处理它们。本文介绍了文献中提出的基于SVM的入侵检测和特征选择系统的综合研究和调查。它首先提出了关于安全攻击,ID和SVM分类器的基本概念和背景知识。然后,它提供了基于SVM的IDS方案的分类,并描述了它们在检测各种类型的异常和入侵时改编了许多类型的SVM分类器。此外,它讨论了调查方案的主要贡献,并突出了与SVM相结合的算法和技术来提高其检测率和精度。最后,讨论了基于SVM的IDS方案的不同性质和限制。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号