首页> 外文期刊>Journal of network and computer applications >HeporCloud: An energy and performance efficient resource orchestrator for hybrid heterogeneous cloud computing environments
【24h】

HeporCloud: An energy and performance efficient resource orchestrator for hybrid heterogeneous cloud computing environments

机译:heporcloud:用于混合异构云计算环境的能量和性能有效资源策划

获取原文
获取原文并翻译 | 示例

摘要

In major Information Technology (IT) companies such as Google, Rackspace and Amazon Web Services (AWS), virtualisation and containerisation technologies are usually used to execute customers' workloads and applications. The computational resources are provided through large-scale datacenters, which consume substantial amount of energy and have, therefore, ecological impacts. Since long, Google runs users' applications in containers, Rackspace offers bare-metal hardware, whereas AWS runs them either in VMs (EC2), containers (ECS) and/or containers inside VMs (Lambda); therefore, making resource management a tedious activity. The role of a resource management system is of the greatest importance, principally, if IT companies practice various kinds of sand-boxing technologies, for instance, bare-metal, VMs, containers, and/or nested containers in their data centers (hybrid platforms). The absence of centralised, workload-aware resource managers and consolidation policies produces questions on datacenters energy efficiency, workloads performance, and users' costs. In this paper, we demonstrate, through several experiments, using the Google workload data for 12,583 hosts and approximately one million tasks that belong to four different kinds of workload, the likelihood of: (i) using workload-aware resource managers in hybrid clouds; (ii) achieving energy and cost savings, in heterogeneous hybrid datacenters such that the workload performance is not affected, negatively; and (iii) how various allocation policies, combined with different migration approaches, will impact on datacenter's energy and performance efficiencies. Using plausible assumptions for hybrid datacenters set-up, our empirical evaluation suggests that, for no migration, a single scheduler is at most 16.86% more energy efficient than distributed schedulers. Moreover, when migrations are considered, our resource manager can save up to 45.61% energy and can improve up to 17.9% workload performance.
机译:在主要信息技术(IT)中,例如Google,Rackspace和Amazon Web服务(AWS),虚拟化和集装箱技术等公司通常用于执行客户的工作负载和应用程序。通过大规模数据中心提供计算资源,这些数据中心消耗大量能量,因此具有生态影响。由于长时间,Google在容器中运行用户的应用程序,RackSpace提供裸机硬件,而AWS在VMS(EC2),容器(ECS)和/或VMS内容(Lambda)中运行它们;因此,使资源管理成为繁琐的活动。资源管理系统的作用主要是最重要的,主要是,如果IT公司在其数据中心中练习各种沙拳技术,例如裸机,VM,容器和/或嵌套容器(混合平台) )。缺乏集中式,工作负载感知资源管理器和整合策略会在数据中心能效,工作负载性能和用户的成本中产生问题。在本文中,我们通过多个实验演示,使用Google工作负载数据使用12,583个主机以及大约一百万个属于四种不同工作量的任务,可能的可能性:(i)在混合云中使用工作负载感知资源管理器; (ii)在异构混合数据中心实现能量和成本节约,使工作负载性能不受影响,负面影响; (iii)各种各样的分配政策,结合不同的迁移方法,将影响数据中心的能源和性能效率。使用对混合数据中心设置的合理假设,我们的实证评估表明,对于迁移,单个调度程序最多比分布式调度程序更多为16.86%。此外,当考虑迁移时,我们的资源管理器可以节省高达45.61%的能量,可以提高工作负载性能高达17.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号