首页> 外文期刊>Journal of network and computer applications >A system call refinement-based enhanced Minimum Redundancy Maximum Relevance method for ransomware early detection
【24h】

A system call refinement-based enhanced Minimum Redundancy Maximum Relevance method for ransomware early detection

机译:基于系统呼叫改进的增强冗余冗余最大相关性冗余冗余冗余最大相关方法,用于勒索软件早期检测

获取原文
获取原文并翻译 | 示例

摘要

Ransomware is a special type of malicious software that encrypts the user's assets and makes it unavailable to the users until a ransom is paid to the ransomware author. Such attacks have become one of the most widespread malware that poses serious threat to both individuals and business organizations. Against this destructive malicious program, the dynamic analysis approach is the most popular approach for detecting such an attack. The majority of dynamic analysis relies on the system calls, as these provide an interface for programs to request service from the operating system. However, the redundancy and the irrelevant system calls that the ransomware authors inject in the actual execution flow of suspicious binaries generate a high noisy behavioural sequence that adversely impacts in the detection performance of anti-ransomware tools. To this end, we proposed a non signature-based detection approach based on the effective windows API call sequences using supervised machine learning techniques. To achieve this objective, we propose an Enhanced Maximum-Relevance and Minimum-Redundancy (EmRmR) filter method to remove the noisy features and select the most relevant subset of features to characterize the real behaviour of the ransomware. Unlike the original mRmR, the EmRmR avoids unnecessary computations intrinsic in the original mRmR algorithms with a small number of evaluations. In addition, this work has introduced a refinement process to reduce the size of the program's call traces by removing those windows API calls that do not have a strong indication for describing the critical behaviour of the ransomware. After accomplishing extensive experimental evaluations, and comparing with existing behavioural based detection approaches, the proposed method has shown to be effective for discriminating the behaviour of ransomware, and indicates a high detection accuracy with few false-positive rates.
机译:Ransomware是一种特殊类型的恶意软件,可加密用户的资产,并使用户无法访问,直到赎金支付给Ransomware作者。这种攻击已成为最广泛的恶意软件之一,对个人和商业组织构成严重威胁。针对这种破坏性的恶意计划,动态分析方法是检测这种攻击的最流行方法。大多数动态分析依赖于系统调用,因为这些呼叫提供了从操作系统请求服务的程序接口。但是,冗余和无关系统调用的赎金软件作者在可疑二进制文件的实际执行流中注入了高噪声的行为序列,这对防勒索瓶工具的检测性能产生了不利影响。为此,我们提出了一种基于非签名的检测方法,基于使用监督机器学习技术的有效Windows API呼叫序列。为了实现这一目标,我们提出了增强的最大相关性和最小冗余(EMRMR)过滤方法来删除嘈杂功能,并选择最相关的功能子集,以表征勒索软件的实际行为。与原始MRMR不同,EMRMR避免了原始MRMR算法中的不必要计算,具有少量的评估。此外,这项工作引入了一种改进过程,通过删除没有强烈指示的Windows API调用来减少程序的呼叫跟踪的大小,以描述勒索软件的临界行为。在完成广泛的实验评估之后,并与现有的基于行为的检测方法进行比较,所提出的方法已显示有效地辨别赎金软件的行为,并表示具有少量假阳性速率的高检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号