首页> 外文期刊>Journal of network and computer applications >Traffic-flow analysis for source-side DDoS recognition on 5G environments
【24h】

Traffic-flow analysis for source-side DDoS recognition on 5G environments

机译:在5G环境中进行源端DDoS识别的流量分析

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel approach for detecting the participation of a protected network device in flooding based Distributed Denial of Service attacks. With this purpose, the traffic flows are inspected at source-side looking for discordant behaviors. In contrast to most previous solutions, the proposal assumes the non-stationarity and heterogeneity inherent in the emergent communication environment. In particular, the approach takes advantage of the monitorization and knowledge acquisition capabilities implemented in the SELFNET (H2020-ICT-2014-2/671672) project, which facilitates its implementation as a self-organizing solution on 5G mobile networks. Monitorization, feature extraction and knowledge acquisition tasks are carried out on centralized control plane, hence the proposed architecture minimizes the impact on operational performance and prompts the end-points mobility. The preliminary results observed when considering different metrics, adjustment parameters, and a dataset with traffic observed in 61 real devices proven efficiency when distinguishing normal activities from DDoS behaviors of different intensity. With an optimal granularity selection, the highest AUC reached values close to 1.0 when measured under the most intense attacks, hence demonstrating optimal TPR and FPR relationships by adapting to the instantiated use cases.
机译:本文介绍了一种新的方法,用于检测受保护的网络设备是否参与了基于洪泛的分布式拒绝服务攻击。为此,在源侧检查流量,以查找不协调的行为。与大多数以前的解决方案相反,该建议假定紧急通信环境中固有的非平稳性和异构性。尤其是,该方法利用了SELFNET(H2020-ICT-2014-2 / 671672)项目中实现的监视和知识获取功能,这有助于其作为自组织解决方案在5G移动网络上的实施。监视,特征提取和知识获取任务在集中控制平面上执行,因此,所提出的体系结构将对操作性能的影响降至最低,并提示了端点的移动性。当考虑正常的活动与不同强度的DDoS行为时,在考虑不同的度量标准,调整参数以及在61个实际设备中观察到流量的数据集时观察到的初步结果证明了效率。通过最佳粒度选择,在最强烈的攻击下进行测量时,最高的AUC达到接近1.0的值,从而通过适应实例化的使用案例展示了最佳的TPR和FPR关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号