首页> 外文期刊>Journal of network and computer applications >An approach for SDN traffic monitoring based on big data techniques
【24h】

An approach for SDN traffic monitoring based on big data techniques

机译:基于大数据技术的SDN流量监控方法

获取原文
获取原文并翻译 | 示例

摘要

Software-defined networking overcomes the limitations of traditional networks by splitting the control plane from the data plane. The logic of the network is moved to a component called the controller that manages devices in the data plane. To implement this architecture, it has become the norm to use the OpenFlow (OF) protocol, which defines several counters maintained by network devices. These counters are the starting point for Traffic Engineering (TE) activities. TE monitors several network parameters, including network bandwidth utilization. A great challenge for TE is to collect and generate statistics about bandwidth utilization for monitoring and traffic analysis activities. This becomes even more challenging if fine-grained monitoring is required. Network management tasks such as network provisioning, capacity planning, load balancing, and anomaly detection can benefit from this fine-grained monitoring. Because the counters are updated for every packet that crosses the switch, they must be retrieved in a streaming fashion. This scenario suggests the use of Big Data streaming techniques to collect and process counter values. Therefore, this paper proposes an approach based on a fine-grained Big Data monitoring method to collect and generate traffic statistics using counter values. This research work can significantly leverage TE. The approach can provide a more detailed view of network resource utilization because it can deliver individual and aggregated statistical analyses of bandwidth consumption. Experimental results show the effectiveness of the proposed method.
机译:通过将控制平面与数据平面分开,软件定义的网络克服了传统网络的局限性。网络逻辑被转移到称为控制器的组件,该组件在数据平面中管理设备。为了实现此体系结构,使用OpenFlow(OF)协议已成为一种规范,该协议定义了由网络设备维护的多个计数器。这些计数器是交通工程(TE)活动的起点。 TE监视多个网络参数,包括网络带宽利用率。 TE面临的一大挑战是收集和生成有关带宽利用率的统计信息,以进行监控和流量分析活动。如果需要细粒度的监控,这将变得更具挑战性。网络管理任务(例如网络供应,容量规划,负载平衡和异常检测)可以从这种细粒度的监视中受益。因为计数器是为穿过交换机的每个数据包更新的,所以必须以流方式检索它们。这种情况建议使用大数据流技术来收集和处理计数器值。因此,本文提出了一种基于细粒度大数据监控方法的方法,该方法使用计数器值来收集和生成流量统计信息。这项研究工作可以极大地利用TE。该方法可以提供网络资源利用率的更详细视图,因为它可以提供带宽消耗的单独和汇总统计分析。实验结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号