首页> 外文期刊>Journal of network and computer applications >Coordinated session-based admission control with statistical learning for multi-tier internet applications
【24h】

Coordinated session-based admission control with statistical learning for multi-tier internet applications

机译:基于会话的协作式准入控制和统计学习,适用于多层互联网应用

获取原文
获取原文并翻译 | 示例

摘要

Popular Internet applications deploy a multi-tier architecture, with each tier provisioning a certain functionality to its preceding tier. In this paper, we address a challenging issue, session-based admission control for peak load management for multi-tier Internet applications. The session-based admission control approach (SBAC) designed for a single Web server is not effective for a multi-tier architecture. This is due to the fact that the bottleneck in a multi-tier website dynamically shifts among tiers as client access patterns change. Admission control based on only the bottleneck tier is not efficient as different sessions impose different resource consumptions at the different tiers. First, we propose a multi-tier measurement based admission control (MBAC), which pro-actively accepts different session mixes based on the utilization state of all tiers. More importantly, we design a coordinated session-based admission control approach (CoSAC) based on a machine learning technique. It uses a Bayesian network to correlate the states of all tiers. The probability with which a session is admitted is determined by the probabilistic inference of the network after applying the evidence in terms of utilization and processing time at each tier to the network. We compare CoSAC with MBAC and a Blackbox approach tailored from SBAC, using the industry standard TPC-W benchmark in a typical three-tier e-commerce website. Experimental results demonstrate the superior performance of CoSAC with respect to the effective session throughput.
机译:流行的Internet应用程序部署了多层体系结构,其中每一层都为其上一层提供了一定的功能。在本文中,我们解决了一个具有挑战性的问题,即基于会话的准入控制,用于多层Internet应用程序的峰值负载管理。为单个Web服务器设计的基于会话的准入控制方法(SBAC)对多层体系结构无效。这是由于以下事实:随着客户端访问模式的变化,多层网站中的瓶颈会在各层之间动态变化。仅基于瓶颈层的准入控制效率不高,因为不同的会话会在不同的层上施加不同的资源消耗。首先,我们提出了一种基于多层测量的准入控制(MBAC),该控制基于所有层的利用率状态主动接受不同的会话混合。更重要的是,我们设计了一种基于机器学习技术的基于会话的协作式准入控制方法(CoSAC)。它使用贝叶斯网络来关联所有层的状态。在将证据应用于网络的每一层的利用率和处理时间之后,由网络的概率推论确定会话被允许的概率。我们在典型的三层电子商务网站中使用行业标准TPC-W基准,将CoSAC与MBAC和SBAC量身定制的Blackbox方法进行了比较。实验结果表明,相对于有效会话吞吐量,CoSAC的性能优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号