首页> 外文期刊>Journal of network and computer applications >Generating temporal semantic context of concepts using web search engines
【24h】

Generating temporal semantic context of concepts using web search engines

机译:使用网络搜索引擎生成概念的时间语义上下文

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of generating temporal semantic context for concepts is studied. The goal of the proposed problem is to annotate a concept with temporal, concise, and structured information, which can reflect the explicit and faceted meanings of the concept The temporal semantic context can help users learn and understand unfamiliar or newly emerged concepts. The proposed temporal semantic context structure integrates the features from dictionary, Wikipedia, and Linkedln web sites. A general method to generate temporal semantic context of a concept by constructing its associated words, associated concepts, context sentences, context graph, and context communities is proposed. Empirical experiments on three different datasets including Q-A dataset, Linkedln dataset, and Wikipedia dataset show that the proposed algorithm is effective and accurate. Different from manually generated context repositories such as Linkedln and Wikipedia, the proposed method can automatically generate the context and does not need any prior knowledge such as ontology or a hierarchical knowledge base. The proposed method is used on some applications such as trend analysis, faceted exploration, and query suggestion. These applications prove the effectiveness of the proposed temporal semantic context problem in many web mining tasks.
机译:本文研究了为概念生成时间语义上下文的问题。提出的问题的目的是用时间,简洁和结构化的信息来注释概念,该信息可以反映该概念的显式和多面含义。时间语义上下文可以帮助用户学习和理解不熟悉或新出现的概念。所提出的时间语义上下文结构整合了字典,维基百科和Linkedln网站的功能。提出了一种通用的方法,通过构造一个概念的关联词,关联概念,上下文句子,上下文图和上下文社区来生成概念的时间语义上下文。对Q-A数据集,Linkedln数据集和Wikipedia数据集这三个不同的数据集进行的实验表明,该算法是有效且准确的。与手动生成的上下文存储库(例如Linkedln和Wikipedia)不同,所提出的方法可以自动生成上下文,并且不需要任何先验知识(例如本体或分层知识库)。该方法可用于趋势分析,多面探索和查询建议等应用。这些应用证明了在许多Web挖掘任务中提出的时间语义上下文问题的有效性。

著录项

  • 来源
  • 作者单位

    The Third Research Institute of the Ministry of Public Security, 339 Bisheng Road, Shanghai 201142, China,Tsinghua University, Beijing, China;

    The Third Research Institute of the Ministry of Public Security, 339 Bisheng Road, Shanghai 201142, China;

    The Third Research Institute of the Ministry of Public Security, 339 Bisheng Road, Shanghai 201142, China;

    The Third Research Institute of the Ministry of Public Security, 339 Bisheng Road, Shanghai 201142, China;

    The Third Research Institute of the Ministry of Public Security, 339 Bisheng Road, Shanghai 201142, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Temporal semantic context; Semantic annotation; Content analysis; Web mining;

    机译:时间语义上下文;语义注释;内容分析;网络挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号