首页> 外文期刊>Journal of network and computer applications >A transform domain-based anomaly detection approach to network-wide traffic
【24h】

A transform domain-based anomaly detection approach to network-wide traffic

机译:基于变换域的网络范围流量异常检测方法

获取原文
获取原文并翻译 | 示例

摘要

Traffic anomalies contain existing abnormal changes in network traffic, which are derived from malicious and anomalous behaviors of users or network devices, such as network faults, abuses, network attacks, etc. These anomalies often damage our operation networks and even lead to network disruptions. In the present paper, we propose a novel method for detecting traffic anomalies in a network by exacting and capturing their features in the transform domain. Here, we take in consideration network topology information and network-wide traffic jointly. We find that anomalous network-wide traffic usually exhibits distinct high-frequency nature. This motivates us to utilize transform domain analysis theory to characterize network-wide traffic to identify its abnormal components. Besides, we group all origin-destination flows in the network in accordance with common destination nodes. By combining network topology information and transform-domain analysis in the given time window, the specious traffic components can be found and identified. Simulation results show that our detection algorithm exhibits a fairly robust detection ability and provides the better detection performance than previous algorithms.
机译:流量异常包含网络流量中现有的异常变化,这些异常变化源于用户或网络设备的恶意和异常行为,例如网络故障,滥用,网络攻击等。这些异常经常损坏我们的运营网络,甚至导致网络中断。在本文中,我们提出了一种通过在转换域中精确捕获特征来检测网络中流量异常的新方法。在这里,我们结合考虑网络拓扑信息和网络范围的流量。我们发现网络范围内的异常流量通常表现出明显的高频特性。这促使我们利用变换域分析理论来表征网络范围的流量,以识别其异常组件。此外,我们根据公共目标节点将网络中的所有始发目的地流进行分组。通过在给定的时间窗口中结合网络拓扑信息和变换域分析,可以发现并识别出虚假的流量分量。仿真结果表明,我们的检测算法具有较强的检测能力,并且比以前的算法具有更好的检测性能。

著录项

  • 来源
    《Journal of network and computer applications》 |2014年第4期|292-306|共15页
  • 作者单位

    College of Information Science and Engineering, Northeastern University, Shenyang 110819, China,State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    College of Information Science and Engineering, Northeastern University, Shenyang 110819, China,School of Business Administration, Northeastern University, Shenyang 110819, China;

    College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;

    Department of Computer Science, State University of New York, Binghamton, NY 13905, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Network-wide traffic; Anomaly detection; Transform-domain analysis; Feature extraction; Origin-destination flows;

    机译:全网流量;异常检测;变换域分析;特征提取;目的地到目的地;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号