首页> 外文期刊>Journal of network and computer applications >MIRACLE: A multiple independent random walks community parallel detection algorithm for big graphs
【24h】

MIRACLE: A multiple independent random walks community parallel detection algorithm for big graphs

机译:MIRACLE:大图的多重独立随机游动社区并行检测算法

获取原文
获取原文并翻译 | 示例

摘要

Abstract Community detection is a common problem in various types of complex networks. With the emerging of large scale real networks like social networks, community detection meets new technology challenges of extremely large computational cost and lack of prior information. Although several literatures recently try to solve these new challenges, they still have limitations of parallelism and running time. With the scale of data increases sharply, the parallelism is necessary but few codes exist. In this work, we analyze the process of random walking in graphs, and observe that the weight of an edge gotten by processing the vertices visited by the walker could be an indicator to measure the closeness of vertex connection. Based on this finding, we first propose a novel parallel computing community detection algorithm for big unweighted undirected graphs in the true sense. The algorithm consists of three steps, including random walking using multiple independent random walks, weight calculating for edges and community detecting. The time complexity of our algorithm is O ( n log n ) without prior information. In order to implement our parallel computing algorithm efficiently, we also propose a novelty graph partition model. Experimental results show that our algorithm is capable of detecting the community structure and the overlapping parts of communities in real-world effectively (reduce the running time by 400 times at least), and handling the challenges of community detection in big graph era.
机译: 摘要 社区检测是各种类型的复杂网络中的常见问题。随着诸如社交网络之类的大规模真实网络的出现,社区检测遇到了新的技术挑战,即计算量巨大且缺乏先验信息。尽管最近有一些文献试图解决这些新挑战,但它们仍然具有并行性和运行时间的限制。随着数据规模的急剧增加,并行性是必需的,但几乎没有代码。在这项工作中,我们分析了图形中的随机游走过程,并观察到通过处理步行者访问的顶点而获得的边的权重可以作为衡量顶点连接紧密度的指标。基于此发现,我们首先提出一种新颖的并行计算社区检测算法,用于真正意义上的大未加权无向图。该算法包括三个步骤,包括使用多个独立的随机游走的随机游走,边缘的权重计算和社区检测。我们算法的时间复杂度为 O n log n ,无需事先提供信息。为了有效地实现我们的并行计算算法,我们还提出了一种新颖的图划分模型。实验结果表明,该算法能够有效地检测现实世界中的社区结构和社区的重叠部分(至少将运行时间减少400倍),并能应对大图时代的社区检测挑战。 ce:simple-para>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号