首页> 外文期刊>Journal of network and computer applications >Virtual resource prediction in cloud environment: A Bayesian approach
【24h】

Virtual resource prediction in cloud environment: A Bayesian approach

机译:云环境中的虚拟资源预测:贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

With increase in requirement for dynamic execution of user's application in cloud, resource prediction techniques are gaining a lot of importance as the foundation for online capacity planning and virtualized resource management in data centers. There is a wide scope for the development of accurate resource requirement prediction methods to ensure that the virtualized resources do not suffer from over or under-utilization. We propose a Bayesian model to determine short and long-term virtual resource requirement of the CPU/memory intensive applications on the basis of workload patterns at several data centers in the cloud during several time intervals. However, the model is applied to predict resource(s) of all applications in general.
机译:随着对用户应用程序在云中动态执行的需求的增加,资源预测技术作为数据中心在线容量规划和虚拟化资源管理的基础正变得越来越重要。开发准确的资源需求预测方法的范围很大,以确保虚拟化资源不会遭受过度利用或利用不足的困扰。我们提出了一种贝叶斯模型,用于基于在多个时间间隔内云中多个数据中心的工作负载模式,确定CPU /内存密集型应用程序的短期和长期虚拟资源需求。但是,该模型通常用于预测所有应用程序的资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号