首页> 外文期刊>Journal of network and computer applications >Model order selection and eigen similarity based framework for detection and identification of network attacks
【24h】

Model order selection and eigen similarity based framework for detection and identification of network attacks

机译:基于模型顺序选择和本征相似性的网络攻击检测与识别框架

获取原文
获取原文并翻译 | 示例

摘要

Novel schemes for attack detection are crucial to identify adaptive malicious traffic coming from sources that are quickly mobilized by attackers in high throughput communication networks. In this context, signal processing techniques have been applied to attack detection due to their capability to detect anomalies that are previously unknown, i.e. blind detection. This paper proposes a signal processing framework for the detection and identification of network attacks using concepts of model order selection (MOS), eigenvalues and similarity analysis. In order to validate the proposed framework, we consider network traffic datasets that contain malicious activity such as flood and port probing attacks. We propose to model the network traffic as a superposition of components, namely, user's operations (legitimate traffic), network service operation not related to the user (noise) and the malicious activity. The experiments performed in a real network and also using the DARPA 1998 public dataset show that the proposed blind detection approach achieves satisfactory levels of accuracy in terms of timely detection and identification of TCP/UDP ports under attack.
机译:新型的攻击检测方案对于识别来自攻击者在高吞吐量通信网络中快速动员的自适应恶意流量至关重要。在这种情况下,由于信号处理技术具有检测先前未知的异常的能力,即盲检测,因此已经被应用于攻击检测。本文提出了一种使用模型阶数选择(MOS),特征值和相似度分析的概念来检测和识别网络攻击的信号处理框架。为了验证所提出的框架,我们考虑了包含恶意活动(例如洪水和端口探测攻击)的网络流量数据集。我们建议将网络流量建模为组件的叠加,即用户的操作(合法流量),与用户无关的网络服务操作(噪声)和恶意活动。在真实网络中进行的实验以及使用DARPA 1998公共数据集的结果表明,所提出的盲检测方法在及时检测和识别受攻击的TCP / UDP端口方面达到了令人满意的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号