首页> 外文期刊>Journal of network and computer applications >PEA: Parallel electrocardiogram-based authentication for smart healthcare systems
【24h】

PEA: Parallel electrocardiogram-based authentication for smart healthcare systems

机译:PEA:用于智能医疗保健系统的基于并行心电图的身份验证

获取原文
获取原文并翻译 | 示例

摘要

Currently, ECG-based authentication is considered highly promising in terms of user identification for smart healthcare systems because of its inimitability, suitability, accessibility and comfortability. However, it is a great challenge to improve the authentication accuracy, especially for scenarios that include a large number of users. Thus, this paper proposes a parallel ECG-based authentication called PEA. Specifically, this paper proposes a hybrid ECG feature extraction method that integrated fiducial- and non-fiducial-based features to extract more comprehensive ECG features and thereby improve the authentication stability. Furthermore, this paper proposes a parallel ECG pattern recognition framework to improve the recognition efficiency in multiple ECG feature spaces. Through the experiments, the performance of the proposed authentication is verified.
机译:当前,基于ECG的身份验证由于其不可模仿性,适用性,可访问性和舒适性,在智能医疗保健系统的用户识别方面被认为非常有前途。但是,提高认证准确性是一个巨大的挑战,特别是对于包含大量用户的方案而言。因此,本文提出了一种基于并行ECG的身份验证,称为PEA。具体而言,本文提出了一种混合的ECG特征提取方法,该方法将基于基准和基于非基准的特征集成在一起,以提取更全面的ECG特征,从而提高了身份验证的稳定性。此外,本文提出了一种并行的ECG模式识别框架,以提高在多个ECG特征空间中的识别效率。通过实验,验证了所提出认证的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号