首页> 外文期刊>Journal of network and computer applications >Adaptive forwarding strategies to reduce redundant Interests and Data in named data networks
【24h】

Adaptive forwarding strategies to reduce redundant Interests and Data in named data networks

机译:自适应转发策略可减少命名数据网络中的冗余兴趣和数据

获取原文
获取原文并翻译 | 示例

摘要

In Named Data Networks, a requester sends out an Interest for a desired content and the routers forward the Interest to the content source/s. Multiple copies of the content, i.e. Data, arrive at the requester if multiple sources respond to the Interest. Apart from the first copy, all other copies of Data arrived are considered redundant, so as the Interests communicated to generate these copies. These redundancies introduce overhead and unnecessary waste of resources. In this paper, two forwarding strategies, Search and Discovery, are proposed to reduce these redundant transmission. Also, a novel asymmetric tree model for transmission of Interests and Data is proposed to analyze the transmission overhead in the network. In Search, a content source calculates the Interest Forwarding Factor (IFF) for each Interest it receives and responds with Data if the IFF is greater or equal to some threshold T. While in Discovery, after calculating the IFF, a source responds with Data if IFF = T otherwise responds with Offer only. Finally, extensive simulation study is conducted using ndnSIM to evaluate the performance of the proposed strategies. Model based analysis and simulation results confirm that, along with reducing the delay and increasing the cache hit, proposed strategies reduce the overhead significantly.
机译:在命名数据网络中,请求者发出对所需内容的兴趣,并且路由器将兴趣转发到内容源。如果多个来源响应兴趣,内容的多个副本(即数据)就会到达请求者。除了第一个副本之外,所有其他到达的数据副本都被视为冗余,因此,为了传达这些利益,生成了这些副本。这些冗余导致开销和不必要的资源浪费。本文提出了两种转发策略,即搜索和发现,以减少这些冗余传输。此外,提出了一种新的兴趣和数据传输的非对称树模型,以分析网络中的传输开销。在搜索中,内容源为接收到的每个兴趣计算兴趣转发因子(IFF),如果IFF大于或等于某个阈值T,则使用数据进行响应。在发现中,在计算IFF之后,如果IFF> = T否则仅响应要约。最后,使用ndnSIM进行了广泛的仿真研究,以评估所提出策略的性能。基于模型的分析和仿真结果证实,除了减少延迟和增加缓存命中率之外,所提出的策略还可以显着减少开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号