首页> 外文期刊>Journal of network and computer applications >An improved payload-based anomaly detector for web applications
【24h】

An improved payload-based anomaly detector for web applications

机译:用于Web应用程序的改进的基于有效负载的异常检测器

获取原文
获取原文并翻译 | 示例

摘要

Payload-based anomaly detection can find out the malicious behavior hidden in network packets rather efficiently. It is quite suitable for securing web applications, which are used widely and a major concern of cyber security nowadays. Our research is based on McPAD. We argue that the assumption about the probability distribution of features in outlier class is not appropriate and figure out a more suitable distribution by analyzing the common types of web attacks. Furthermore, we propose a new mapping algorithm for dimensionality reduction in order to improve the performance of the original one. Finally, we try to speed up the training process without significantly affect the detection performance. The experimental results show that the training time can be reduced by an average of 24.75%.
机译:基于有效负载的异常检测可以非常有效地发现隐藏在网络数据包中的恶意行为。它非常适合保护Web应用程序的安全,Web应用程序是当今网络安全和广泛关注的一个主要问题。我们的研究基于McPAD。我们认为,关于异常类中特征的概率分布的假设是不合适的,并通过分析网络攻击的常见类型来找出更合适的分布。此外,我们提出了一种新的降维映射算法,以提高原始算法的性能。最后,我们尝试在不显着影响检测性能的情况下加快训练过程。实验结果表明,训练时间平均可减少24.75%。

著录项

  • 来源
    《Journal of network and computer applications》 |2018年第3期|111-116|共6页
  • 作者单位

    Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Xitucheng Rd 10th, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Xitucheng Rd 10th, Beijing 100876, Peoples R China;

    Inst China Gen Technol, Beijing, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Xitucheng Rd 10th, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Xitucheng Rd 10th, Beijing 100876, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Payload-based; Anomaly detection; Web applications;

    机译:基于有效负载;异常检测;Web应用程序;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号