首页> 外文期刊>Journal of multiple-valued logic and soft computing >Comparison of Computational Intelligence Models on Forecasting Automated Teller Machine Cash Demands
【24h】

Comparison of Computational Intelligence Models on Forecasting Automated Teller Machine Cash Demands

机译:计算智能模型对预测自动柜台机现金需求的比较

获取原文
获取原文并翻译 | 示例

摘要

We take up the problem of forecasting the amount of money to be withdrawn from automated teller machines (ATM). We compare the performances of eleven different algorithms from four different research areas on two different datasets. The exploited algorithms are fuzzy time series, multiple linear regression, artificial neural network, autoregressive integrated moving average, gaussian process regression, support vector regression, long-short term memory, simultaneous perturbation stochastic approximation, migrating birds optimization, differential evolution, and particle swarm optimization. The first dataset is very volatile and is obtained from a Turkish bank whereas the more stationary second dataset is obtained from a UK bank which was used in competitions previously. We use mean absolute deviation (MAD) to compare the algorithms since it provides a universal comparison ability independent of the magnitude of the data. The results show that support vector regression (SVR) performs the best on both data sets with a very short run time.
机译:我们占据了预测从自动柜员机(ATM)撤回的金额的问题。我们将11个不同算法的表演与两个不同的数据集上的四个不同研究区域进行了比较。利用算法是模糊时间序列,多元线性回归,人工神经网络,自回归综合移动平均,高斯过程回归,支持向量回归,长短术记忆,同时扰动随机近似,迁移鸟类优化,差分演化和粒子群优化。第一个数据集是非常挥发性的,并从土耳其银行获得,而静止的第二数据集可以从先前在比赛中使用的英国银行获得。我们使用平均绝对偏差(MAD)来比较算法,因为它提供了独立于数据幅度的通用比较能力。结果表明,支持向量回归(SVR)在两个数据集上执行最佳,其中运行时非常短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号