首页> 外文期刊>Journal of multiple-valued logic and soft computing >An Improved Feedforward Fuzzy Neural Network and Its Learning Algorithm
【24h】

An Improved Feedforward Fuzzy Neural Network and Its Learning Algorithm

机译:改进的前馈模糊神经网络及其学习算法

获取原文
获取原文并翻译 | 示例

摘要

Symmetric polygonal fuzzy number is employed to construct an improved feedforward fuzzy neural network(FNN). First, a novel fuzzy arithmetic and extension principle for such polygonal fuzzy numbers is derived. Second, the topological architecture of a three layer feedforward FNN is presented, and the input-output law of such a network is systematically studied. Third, a fuzzy BP learning algorithm for the polygonal fuzzy number connection weights and thresholds of the FNN is developed. Finally a simulation example is analyzed to realize approximately data pairs whose values are real numbers and symmetric polygonal fuzzy numbers, by the adaptive three layer feedforward FNN.
机译:利用对称多边形模糊数构造了一种改进的前馈模糊神经网络。首先,推导了这种多边形模糊数的一种新颖的模糊算法和扩展原理。其次,提出了一种三层前馈神经网络的拓扑结构,并对该系统的输入输出规律进行了系统的研究。第三,针对模糊神经网络的多边形模糊数连接权重和阈值,建立了模糊BP学习算法。最后,通过一个自适应三层前馈FNN,对一个仿真实例进行了分析,以实现近似值为实数和对称多边形模糊数的数据对。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号