首页> 外文期刊>Journal of multiple-valued logic and soft computing >A Hybrid Method Based on Empirical Mode Decomposition and Random Forest Regression for Wind Power Forecasting
【24h】

A Hybrid Method Based on Empirical Mode Decomposition and Random Forest Regression for Wind Power Forecasting

机译:基于经验模式分解和随机森林回归的风电功率预测混合方法

获取原文
获取原文并翻译 | 示例

摘要

As a renewable energy source, wind energy is abundant, environmentally and friendly. But due to intermittent nature of wind, accurate prediction of wind power is quite difficult. On the other hand, accurate prediction of wind energy production is very significant for integration of wind power to the power grid. This study addresses hourly wind energy production forecasting by proposing a hybrid method based on two powerful techniques: empirical mode decomposition (EMD) and random forest regression (RFR). This is the first study which uses EMD- RFR hybrid method for wind power forecasting. The performance of the proposed method is tested on real wind power data of one of the pioneering energy companies in Turkey. The proposed model was verified by comparing it with other intelligent models. The experimental results demonstrate that the EMD-RFR model outperforms the single RFR model, the single SVMR model and the EMD- SVMR hybrid model based on different performance measures.
机译:作为可再生能源,风能资源丰富,环境友好。但是由于风的间歇性,准确预测风能非常困难。另一方面,对风能生产的准确预测对于将风电整合到电网中非常重要。本研究通过提出一种基于两种强大技术的混合方法来解决小时风能发电的预测问题:经验模式分解(EMD)和随机森林回归(RFR)。这是第一项使用EMD-RFR混合方法进行风能预测的研究。该方法的性能已在土耳其一家领先的能源公司之一的真实风能数据上进行了测试。通过与其他智能模型进行比较验证了该模型。实验结果表明,基于不同的性能指标,EMD-RFR模型优于单一RFR模型,单一SVMR模型和EMD-SVMR混合模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号