首页> 外文期刊>Journal of Multimedia >Image Object Detection Algorithm Based on Improved Gaussian Mixture Model
【24h】

Image Object Detection Algorithm Based on Improved Gaussian Mixture Model

机译:基于改进高斯混合模型的图像目标检测算法

获取原文
获取原文并翻译 | 示例

摘要

Aiming at poor adaptability to illumination variation and single learning rate in traditional Gaussian mixture model, an improved moving object detection algorithm based on adaptive Gaussian mixture model is proposed in this paper, so as to achieve the goal of a self-adaptive background updating model. In this paper, we analyze the existed algorithms and put forward the method to make use of color histogram matching algorithm, through introduction of illumination variation factor and update-counter of model parameter and the components number with self-adaptive selection employed to adaptively adjust learning rate, in order to greatly reduce the computation time of the algorithm and improve the real-time performance. The experiment results show that the new method can effectively adapt the scene, and has more good expansibility, robustness and stability than traditional Gaussian mixture model.
机译:针对传统高斯混合模型对光照变化和单一学习率的适应性差的问题,提出了一种基于自适应高斯混合模型的改进运动目标检测算法,以达到自适应背景更新模型的目的。本文通过分析光照变化因子和模型参数更新计数器以及采用自适应选择的成分数自适应调整学习的方法,分析了现有算法并提出了利用颜色直方图匹配算法的方法。速率,以大大减少算法的计算时间,提高实时性能。实验结果表明,与传统的高斯混合模型相比,新方法能够有效地适应场景,并且具有更好的扩展性,鲁棒性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号