首页> 外文期刊>Journal of Micro/Nanolithography,MEMS,and MOEMS >Comparative annealing effect on bonded wafers in air and ultrahigh vacuum for microelectromechanical systems/microfluidics packaging
【24h】

Comparative annealing effect on bonded wafers in air and ultrahigh vacuum for microelectromechanical systems/microfluidics packaging

机译:在微机电系统/微流控包装中,在空气和超高真空下对键合晶圆的比较退火效果

获取原文
获取原文并翻译 | 示例
       

摘要

The fundamentals of room temperature bonding methods—nsurface activated bonding (SAB) and sequentially plasma-activatednbonding (SPAB)—are reviewed with applications for packaging of micro-nelectromechanical systems (MEMS) and microfluidic devices. The roomntemperature bonding strength of the silicon/silicon interface in the SABnand SPAB is as high as that of the hydrophilic bonding method, whichnrequires annealing as high as 1000◦nC to achieve covalent bonding. Afternheating, voids are not observed and bonding strengths are not changednin the SAB. In the SPAB, interfacial voids are increased and decreasednthe bonding strength. Water rearrangement such as absorption and des-norption across the bonded interface is found below 225◦nC. While voidsnare not significant up to 400◦nC, a considerable amount of thermal voidsnabove 600◦nC is found due to viscous flow of oxides. Before heating, inter-nfacial amorphous layers are observed both in the SAB (8.3 nm) and SPABn(4.8 nm), but after heating these disappear and enlarge in the SAB andnSPAB, respectively. This enlarged amorphous layer is SiO2, which is duento the oxidation of silicon/silicon interface after sequential heating. Thenbonding strength, sealing, and chemical performances of the interfacesnmeet the requirements for MEMS and microfluidics applications
机译:室温键合方法的基本原理-表面活化键合(SAB)和顺序等离子体活化键合(SPAB)-已在包装微机电系统(MEMS)和微流体装置的应用中得到了综述。 SABnand SPAB中硅/硅界面的室温键合强度与亲水键合方法的室温键合强度一样高,而亲水键合方法需要退火至1000ºnC才能达到共价键合。加热后,在SAB中未观察到空隙,粘结强度也未改变。在SPAB中,界面空隙增加和减小了粘结强度。在低于225°C的温度下,会发生水重排,例如跨键合界面的吸收和去甲北非。尽管空隙温度在400℃以下并不显着,但由于氧化物的粘性流,发现大量热量空隙在600℃以下。在加热之前,在SAB(8.3 nm)和SPABn(4.8 nm)中都观察到界面非晶层,但是在加热之后,它们分别在SAB和nSPAB中消失并增大。该扩大的非晶层是SiO 2,这是由于顺序加热后硅/硅界面的氧化所致。然后界面的粘合强度,密封性和化学性能无法满足MEMS和微流体应用的要求

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号