首页> 外文期刊>Journal of microanolithography, MEMS, and MOEMS >Localized and cascading secondary electron generation as causes of stochastic defects in extreme ultraviolet projection lithography
【24h】

Localized and cascading secondary electron generation as causes of stochastic defects in extreme ultraviolet projection lithography

机译:局部和级联的二次电子生成是极紫外投影光刻中随机缺陷的原因

获取原文
获取原文并翻译 | 示例

摘要

Projection lithography using extreme ultraviolet (EUV) light at 13-nm wavelength is expected to achieve production of integrated circuits below 10 nm design-rules. In pursuit of further miniaturization, however, stochastic pattern defect problems have arisen. Here, we discuss the possible impact of spatially inhomo-geneous secondary electron (SE) generation on stochastic defects. Two mechanisms are investigated: (1) accidental connections of photon shot noises enhanced by densely localized SE generation and (2) cascading SE generation along photoelectron trajectory traveling from pattern edge into a dark region. Since such defect probabilities are extremely low (typically 10~(-4) to ~10~(-12)), results of Monte Carlo simulation based on classical optical image and electron scattering simulations are converted into probability functions for densities of physical/chemical events such as photon absorption, SE generation, and elementary reaction in chemically amplified resists. Probabilities of pattern formation and of defect generation are modeled using these functions. Results of performance optimization using a multiobjective genetic algorithm show higher stochastic defects probability in EUV than in conventional deep-UV exposure due to larger spatial inhomogeneity in reaction density and existence of SE generation strings. Defect probabilities are strongly dependent on absolute pattern sizes in the two mechanisms, regardless of the resolution capability of imaging systems. Guidelines for suppressing stochastic defects are suggested, such as homogenization of reaction density, material composition for increasing scattering cross-section, and suppression of pattern edge fluctuation.
机译:使用13纳米波长的极紫外(EUV)光进行投影光刻有望实现低于10纳米设计规则的集成电路生产。然而,为了进一步小型化,出现了随机图案缺陷问题。在这里,我们讨论了空间非均质二次电子(SE)生成对随机缺陷的可能影响。研究了两种机制:(1)致密局部SE生成增强了光子散粒噪声的偶然连接;(2)沿着从图案边缘到暗区的光电子轨迹级联SE生成。由于此类缺陷的概率极低(通常为10〜(-4)至〜10〜(-12)),因此将基于经典光学图像和电子散射仿真的蒙特卡罗模拟结果转换为物理/化学密度的概率函数化学放大的抗蚀剂中发生了诸如光子吸收,SE生成和元素反应之类的事件。使用这些函数可以对图案形成和缺陷产生的概率进行建模。使用多目标遗传算法进行性能优化的结果显示,由于反应密度中较大的空间不均匀性和SE生成字符串的存在,EUV中的随机缺陷概率高于常规的深紫外线暴露。无论成像系统的分辨能力如何,缺陷概率在很大程度上取决于这两种机制中的绝对图案尺寸。建议了抑制随机缺陷的准则,例如反应密度的均质化,用于增加散射截面的材料成分以及抑制图案边缘波动的准则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号