首页> 外文期刊>The Journal of Mathematical Neuroscience >Phase-Amplitude Descriptions of Neural Oscillator Models
【24h】

Phase-Amplitude Descriptions of Neural Oscillator Models

机译:神经振荡器模型的相位幅度描述

获取原文
获取原文并翻译 | 示例
           

摘要

Phase oscillators are a common starting point for the reduced description of many single neuron models that exhibit a strongly attracting limit cycle. The framework for analysing such models in response to weak perturbations is now particularly well advanced, and has allowed for the development of a theory of weakly connected neural networks. However, the strong-attraction assumption may well not be the natural one for many neural oscillator models. For example, the popular conductance based Morris–Lecar model is known to respond to periodic pulsatile stimulation in a chaotic fashion that cannot be adequately described with a phase reduction. In this paper, we generalise the phase description that allows one to track the evolution of distance from the cycle as well as phase on cycle. We use a classical technique from the theory of ordinary differential equations that makes use of a moving coordinate system to analyse periodic orbits. The subsequent phase-amplitude description is shown to be very well suited to understanding the response of the oscillator to external stimuli (which are not necessarily weak). We consider a number of examples of neural oscillator models, ranging from planar through to high dimensional models, to illustrate the effectiveness of this approach in providing an improvement over the standard phase-reduction technique. As an explicit application of this phase-amplitude framework, we consider in some detail the response of a generic planar model where the strong-attraction assumption does not hold, and examine the response of the system to periodic pulsatile forcing. In addition, we explore how the presence of dynamical shear can lead to a chaotic response.
机译:相位振荡器是简化描述具有强烈吸引极限周期的许多单个神经元模型的通用起点。现在,针对弱微扰动分析此类模型的框架特别先进,并且允许开发弱连接神经网络理论。但是,对于许多神经振荡器模型来说,强吸引力假设可能不是自然的。例如,众所周知,基于流行的电导的Morris-Lecar模型能够以混沌的方式对周期性的搏动刺激做出反应,而这种混沌方式无法通过相位减小来充分描述。在本文中,我们对相位描述进行了概括,使人们可以跟踪距周期的距离以及周期之间的相位变化。我们使用来自常微分方程理论的经典技术,该技术利用移动坐标系来分析周期轨道。随后的相位幅度描述非常适合于理解振荡器对外部刺激(不一定弱)的响应。我们考虑了许多神经振荡器模型的示例,从平面模型到高维模型,以说明这种方法在提供对标准相位减小技术的改进方面的有效性。作为此相幅框架的显式应用,我们将详细考虑通用平面模型的响应,在该平面模型中,强吸引力假设不成立,并检查系统对周期性脉动强迫的响应。此外,我们探索动态剪切力的存在如何导致混沌响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号