首页> 外文期刊>Journal of Materials Science >Enhancing the photovoltaic effect in the infrared region by germanium quantum dots inserted in the intrinsic region of a silicon p-i-n diode with nanostructure
【24h】

Enhancing the photovoltaic effect in the infrared region by germanium quantum dots inserted in the intrinsic region of a silicon p-i-n diode with nanostructure

机译:通过在具有纳米结构的硅p-i-n二极管的本征区中插入锗量子点来增强红外区中的光伏效应

获取原文
获取原文并翻译 | 示例
           

摘要

We show that a strong photovoltaic response in the infrared region of the solar spectrum (1.1–1.4 μm wavelength) is obtained by inserting a multilayer structure of germanium quantum dots and silicon spacer layers into the intrinsic region of a silicon p-i-n diode. The multilayer structure (active layer) is deposited on an n-type silicon wafer using the technique of ultra-high vacuum chemical vapor deposition. Reflection high-energy electron diffraction has been used to in situ monitor the transition from the two-dimensional to three-dimensional growth mode of germanium on silicon. The p-type layer of the diode is formed in situ by doping a layer of silicon with boron. Prototype solar cells have been fabricated in situ to measure the energy conversion efficiency. Photoluminescence spectroscopy has been used to probe the presence of any defect-related energy levels within the band gap, and the quality of the diode is determined from measurement of dark current. Scanning electron microscopy, atomic force microscopy, and transmission/scanning transmission electron microscopy have been used to characterize the structure of the active layer. It is demonstrated that by optimizing the structure of the active layer to minimize recombination of charge carriers in the quantum dots, a short-circuit current of 24 mA/cm2 and an open-circuit voltage of 0.6 V could be achieved leading to an energy conversion efficiency of about 11.5% corresponding to an active layer with a thickness of 300 nm.
机译:我们表明,通过将锗量子点和硅间隔层的多层结构插入到硅p-i-n二极管的本征区域中,可以在太阳光谱的红外区域(波长为1.1-1.4μm)中获得强光伏响应。使用超高真空化学气相沉积技术将多层结构(活性层)沉积在n型硅晶片上。反射高能电子衍射已用于原位监测锗在硅上从二维生长模式向三维生长模式的转变。通过用硼掺杂硅层原位形成二极管的p型层。原型太阳能电池已经就地制造出来以测量能量转换效率。光致发光光谱已被用于探测带隙内任何与缺陷相关的能级的存在,并且二极管的质量由暗电流的测量确定。扫描电子显微镜,原子力显微镜和透射/扫描透射电子显微镜已用于表征活性层的结构。结果表明,通过优化有源层的结构以最小化量子点中载流子的重新结合,可以实现24 mA / cm2的短路电流和0.6 V的开路电压,对应于厚度为300 nm的有源层的能量转换效率约为11.5%。

著录项

  • 来源
    《Journal of Materials Science》 |2012年第1期|p.93-99|共7页
  • 作者

    H. M. Tawancy;

  • 作者单位

    Center for Engineering Research, Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum &amp Minerals, P. O. Box 1639, Dhahran, 31261, Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号