首页> 外文期刊>Journal of materials science >Nanophase hydroxyapatite and poly(lactide-co-glycolide) zomposites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro
【24h】

Nanophase hydroxyapatite and poly(lactide-co-glycolide) zomposites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro

机译:纳米羟基磷灰石和聚乳酸-乙交酯共聚体在体外促进人间充质干细胞粘附和成骨分化

获取原文
获取原文并翻译 | 示例
           

摘要

Human mesenchymal stem cells (hMSCs) typically range in size from 10 to 50 μm and proteins that mediate hMSC adhesion and differentiation usually have a size of a few nanometers. Nanomaterials with a feature size smaller than 100 nm have demonstrated the unique capability of promoting osteoblast (bone forming cell) adhesion and long-term functions, leading to more effective bone tissue regeneration. For new bone deposition, MSCs have to be recruited to the injury or disease sites and then differentiate into osteoblasts. Therefore, designing novel nanomaterials that are capable of attracting MSCs and directing their differentiation is of great interest to many clinical applications. This in vitro study investigated the effects of nanophase hydroxyapatite (nano-HA), nano-HA/ poly(lactide-co-glycolide) (PLGA) composites and a bone morphogenetic protein (BMP-7) derived short peptide on osteogenic differentiation of hMSCs. The short peptide was loaded by physical adsorption to nano-HA or by dispersion in nanocomposites and in PLGA to determine their effects on hMSC adhesion and differentiation. The results showed that the nano-HA/PLGA composites promoted hMSC adhesion as compared to the PLGA controls. Moreover, nano-HA/PLGA composites promoted osteogenic differentiation of hMSCs to a similar extent with or without the presence of osteogenic factors in the media. In the MSC growth media without the osteogenic factors, the nanocomposites supported greater calcium-containing bone mineral deposition by hMSC than the BMP-derived short peptide alone. The nanocomposites provided promising alternatives in controlling the adhesion and differentiation of hMSCs without osteogenic factors from the culture media, and, thus, should be further studied for clinical translation and the development of novel nanocomposite-guided stem cell therapies.
机译:人间充质干细胞(hMSCs)的大小通常在10到50μm之间,而介导hMSC粘附和分化的蛋白质通常具有几纳米的大小。特征尺寸小于100 nm的纳米材料已证明具有促进成骨细胞(成骨细胞)粘附和长期功能的独特能力,从而可以更有效地再生骨组织。对于新的骨骼沉积,必须将MSC募集到损伤或疾病部位,然后分化为成骨细胞。因此,设计能够吸引MSC并指导其分化的新型纳米材料对许多临床应用都非常感兴趣。这项体外研究研究了纳米羟基磷灰石(nano-HA),纳米HA /聚(丙交酯-共-乙交酯)(PLGA)复合材料和骨形态发生蛋白(BMP-7)衍生的短肽对hMSCs成骨分化的影响。通过物理吸附到nano-HA或通过分散在纳米复合材料和PLGA中来加载短肽,以确定它们对hMSC粘附和分化的影响。结果表明,与PLGA对照相比,纳米HA / PLGA复合材料促进hMSC粘附。此外,在介质中存在或不存在成骨因子的情况下,纳米HA / PLGA复合材料均能以相似的程度促进hMSC的成骨分化。在没有成骨因子的MSC生长培养基中,纳米复合材料比单独的BMP衍生的短肽支持更多的hMSC含钙的骨矿物质沉积。纳米复合物为控制hMSCs的粘附和分化提供了有希望的替代方法,而没有从培养基中获得成骨因子,因此,应作进一步的研究,以进行临床翻译和新型纳米复合物引导的干细胞疗法的开发。

著录项

  • 来源
    《Journal of materials science》 |2012年第10期|2543-2552|共10页
  • 作者单位

    Department of Bioengineering, University of California, Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA;

    Department of Bioengineering, University of California, Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA;

    Department of Bioengineering, University of California, Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA,The Materials Science and Engineering Program, University of California, Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA,Stem Cell Center, University of California, Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号