首页> 外文期刊>Journal of materials science >One-pot EPD/ECD fabrication of high-performance binder-free nanocomposite based on the Fe_3O_4 nanoparticles/porous graphene sheets for supercapacitor applications
【24h】

One-pot EPD/ECD fabrication of high-performance binder-free nanocomposite based on the Fe_3O_4 nanoparticles/porous graphene sheets for supercapacitor applications

机译:基于Fe_3O_4纳米粒子/用于超级电容器应用的Fe_3O_4纳米粒子/多孔石墨烯片的一锅EPD / ECD制备

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, we report one-pot fabrication of Fe_3O_4 nanoparticles electro-chemically decorated onto porous graphene nanosheets (PGNs) as high-performance nanocomposite for energy storage applications. In this regard, a novel and facile electrophoretic/electrochemical deposition (EPD/ECD) method was developed for the fabrication of binder-free high performance Fe_3O_4@PGNs/Ni foam. For comparison, pristine Fe_3O_4/Ni foam and PGNs/Ni foam electrodes were also fabricated via electrochemical and electrophoretic methods, respectively. The prepared materials were characterized by XRD, FT-IR, FE-SEM, TEM, TGA/DSC and BET techniques. The results confirmed co-deposition of Fe_3O_4 particles and porous graphene sheets onto the surface of Ni foam. The capabilities of the fabricated electrodes (i.e. Fe_3O_4/Ni foam, PGNs/Ni foam, Fe_3O_4@PGNs/Ni foam) were investigated as the binder-free electrodes for supercapacitor applications. The composite electrode showed specific capacitance as high as 892 F g~(-1) at the current density of 0.5 A g~(-1), where Fe_3O_4/Ni foam, PGNs/Ni foam electrodes exhibited only 312 F g~(-1) and 401 F g~(-1), respectively. Furthermore, the rate capability of the Fe_3O_4@PGNs/Ni foam electrode was found to be 73.2% as the current density increased to 10 A g~(-1), which was much higher than those of both pure Fe_3O_4/NF and PGNs/NF electrodes (i.e. 40% and 59%, respectively). In addition, the cycling stabilities of the composite electrode were measured to be 95.2% and 87.6% after 4000 successive charge/discharge cycles at the current densities of 2 and 5 A g~(-1), where the pristine Fe_3O_4/Ni foam exhibited capacity retentions of 81% and 67% at the current loads of 2 and 5 A g~(-1), respectively. The obtained results confirmed an outstanding performance of the fabricated Fe_3O_4@PGNs composite electrode as compared with single-component electrodes (i.e. Fe_3O_4/Ni foam, PGNs/Ni foam). These findings implicated the positive synergistic effects between Fe_3O_4 and porous graphene nanosheets to exhibit high supercapacitive performance.
机译:在本文中,我们报告了一种电气化学装饰到多孔石墨烯纳米片(PGN)的Fe_3O_4纳米颗粒的一锅制造,作为高性能纳米复合材料,用于储能应用。在这方面,开发了一种新颖的和容易电泳/电化学沉积(EPD / ECD)方法,用于制备无粘合剂高性能Fe_3O_4 @ PGNS / Ni泡沫。为了比较,还通过电化学和电泳方法制造原始Fe_3O_4 / Ni泡沫和PGNS / Ni泡沫电极。制备的材料以XRD,FT-IR,Fe-SEM,TEM,TGA / DSC和BET技术为特征。结果证实Fe_3O_4颗粒和多孔石墨烯片的共沉积在Ni泡沫的表面上。研究了制造电极的能力(即Fe_3O_4 / Ni泡沫,PGNS / Ni泡沫,Fe_3O_4 @ PGNS / Ni泡沫)作为超级电容器应用的无粘合剂电极。复合电极以0.5Ag〜(-1)的电流密度高达892f g〜(-1)的特定电容,其中Fe_3O_4 / Ni泡沫,PGNS / Ni泡沫电极仅表现出312 f g〜( - 1)分别为401f g〜(-1)。此外,发现Fe_3O_4 @ PGNS / Ni泡沫电极的速率能力为73.2%,因为电流密度增加到10Ag〜(-1),其远高于纯FE_3O_4 / NF和PGNS / NF电极(即分别为40%和59%)。此外,在4000个连续电荷/放电循环的情况下测量复合电极的循环稳定性为2和5Ag〜(-1)的电流密度,其中PRISTINE FE_3O_4 / NI泡沫表现出电流载荷分别在2和5Ag〜(-1)的电量保持81%和67%的容量保持。与单组分电极相比,所得结果证实了制造的Fe_3O_4 @ PGNS复合电极的出色性能(即Fe_3O_4 / Ni泡沫,PGNS / Ni泡沫)。这些发现涉及Fe_3O_4和多孔石墨烯纳米片之间的阳性协同作用,以表现出高的超级电容性能。

著录项

  • 来源
    《Journal of materials science》 |2020年第22期|19569-19586|共18页
  • 作者单位

    School of Metallurgy and Materials Engineering Alborz Campus University of Tehran Alborz Iran Nuclear Fuel and Material Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran;

    Department of Chemical Engineering Faculty of Engineering University of Tehran Tehran Iran;

    Nuclear Fuel and Material Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran;

    Nuclear Fuel and Material Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号