首页> 外文期刊>Journal of materials science >Binder-free high-performance Fe_3O_4 fine particles in situ grown onto N-doped porous graphene layers co-embedded into porous substrate as supercapacitor electrode
【24h】

Binder-free high-performance Fe_3O_4 fine particles in situ grown onto N-doped porous graphene layers co-embedded into porous substrate as supercapacitor electrode

机译:无粘合剂的高性能Fe_3O_4精细颗粒原位生长在N掺杂的多孔石墨烯层上,作为超级电容器电极共嵌入多孔基材中

获取原文
获取原文并翻译 | 示例
           

摘要

It has repeatedly been reported that low conductivity of iron oxide as a major challenge limited its supercapacitive application, where compositing Fe_3O_4 with carbonaceous nanomaterial can be considered as excellent solution strategy. In this paper, we report Fe_3O_4 nanoparticles electrochemically deposited on graphene oxide sheets as high-performance nanocomposite for energy storage applications. Iron oxide nanoparticles (Fe_3O_4) are cathodically decorated on N-doped porous graphene (N-PG) nanosheets. The prepared pristine and nanocomposite materials were characterized by FT-IR, Raman, XRD, BET, TEM, FE-SEM, EDS, as well as TGA/DSC techniques. The electrochemical properties of resulting Fe_3O_4/Ni foam and Fe_3O_4@N-PG/Ni foam electrodes were investigated through CV, GCD, and EIS techniques, and the obtained data showed that the fabricated hybrid electrode (i.e., Fe_3O_4@N-PG/Ni foam) is enable to present specific capacitance values s as high as 822 and 631 F g~(-1) at the 0.5 and 10 A g~(-1), respectively, where the pristine Fe_3O_4/Ni foam electrode showed 279 and 131 F g~(-1) at the 0.5 and 10 A g~(-1). Furthermore, the hybrid Fe_3O_4@N-PG/Ni foam electrode showed excellent cycling ability, good high rate, and higher energy density as compared with the Fe_3O_4/Ni foam electrode. These enhancements were assigned to the synergetic contributions between N-doped porous graphene sheets and iron oxide particles, which mainly results from the rational architecture of N-PG nanosheets and Fe_3O_4 nanoparticles provided by the applied synthetic route.
机译:它一再报道,作为主要挑战的氧化铁的低导电性限制了其超级涂布应用,其中具有碳质纳米材料的合成Fe_3O_4可以被认为是优异的解决方案策略。在本文中,我们报告电化学沉积在石墨烯涂层上的Fe_3O_4纳米颗粒作为高性能纳米复合材料,用于储能应用。氧化铁纳米颗粒(Fe_3O_4)在N掺杂的多孔石墨烯(N-PG)纳米晶片上是阴极的装饰。通过FT-IR,拉曼,XRD,BET,TEM,FE-SEM,EDS以及TGA / DSC技术表征制备的原始和纳米复合材料。通过CV,GCD和EIS技术研究所得Fe_3O_4 / Ni泡沫和Fe_3O_4 / Ni泡沫电极的电化学性能,并且所获得的数据显示制造的混合电极(即Fe_3O_4 @ N-PG / Ni泡沫以分别在0.5和10A g〜(-1)分别以高达822和631f g〜(-1)的特定电容值S的特定电容值S分别呈现,其中原始Fe_3O_4 / Ni泡沫电极显示为279和131在0.5和10a g〜(-1)的f g〜(-1)。此外,与Fe_3O_4 / Ni泡沫电极相比,杂交Fe_3O_4 @ N-PG / Ni泡沫电极显示出优异的循环能力,高速率,较高的能量密度。将这些增强分配给N掺杂多孔石墨烯片和氧化铁颗粒之间的协同贡献,其主要由由所施加的合成途径提供的N-PG纳米液和Fe_3O_4纳米颗粒的RATIONATIONAL结构产生。

著录项

  • 来源
    《Journal of materials science》 |2020年第18期|15198-15217|共20页
  • 作者单位

    School of Metallurgy and Materials Engineering Alborz Campus University of Tehran Alborz Iran Material and Nuclear Fuel Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran;

    Material and Nuclear Fuel Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran;

    Department of Chemical Engineering Faculty of Engineering University of Tehran Tehran Iran;

    Material and Nuclear Fuel Research School Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号