AbstractThe (1 − x)(Li0.03Na0.5K0.47)(Nb0'/> Effects of nano-sized BCZT on structure and electrical properties of KNN-based lead-free piezoceramics
首页> 外文期刊>Journal of materials science >Effects of nano-sized BCZT on structure and electrical properties of KNN-based lead-free piezoceramics
【24h】

Effects of nano-sized BCZT on structure and electrical properties of KNN-based lead-free piezoceramics

机译:纳米BCZT对KNN基无铅压电陶瓷结构和电性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractThe (1 − x)(Li0.03Na0.5K0.47)(Nb0.92Sb0.05Ta0.03)O3–xBa0.85Ca0.15Zr0.1Ti0.9O3(LNKNST–BCZT, x = 0, 0.5, 1.5, 2.5, and 3.5%) lead-free piezoceramics were synthesized by the conventional solid-state reaction method with adding nano-sized Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT) powder to investigate their influences on crystal structure and electrical properties. The X-ray diffraction (XRD) analysis reveals that all the sintered LNKNST–BCZT ceramics exhibit pure perovskite structure with the mainly rhombohedral (R) phase or the coexistence of rhombohedral (R) phase and tetragonal (T) phase. The composition of the LNKNST–1.5%BCZT ceramics locates around the critical point, i.e., the ceramics changing from the coexistence of rhombohedral (R) phase and tetragonal (T) phase to purely rhombohedral (R) phase, and presents the most densified microstructure morphology, which can be confirmed further by the field emission scanning electron microscope (FESEM) observation. There are two dielectric anomalies in the temperature dependent dielectric properties curves of the LNKNST–BCZT ceramics, which correlate with the ferroelectric rhombohedral (R) phase changing to the ferroelectric tetragonal (T) phase, and then to the paraelectric cubic (C) phase. Both the Curie–Weiss law and the power law fittings confirm the diffuse phase transition ferroelectrics characteristic of the LNKNST–1.5%BCZT ceramics, which is considered as correlating with the polar nanoregions (PNRs). Due to the densification effect caused by the chosen amount of nano-sized BCZT doping and the construction of R–T polymorphic phase boundary, the LNKNST–1.5%BCZT ceramics exhibit the best ferroelectric and piezoelectric properties. The complex impedance spectroscopy analysis confirms that the extrinsic electrical conduction mechanism at high temperatures is dominated by the oxygen vacancies induced by the evaporation of the alkali metals during sintering.
机译: 摘要 The(1 − x)(Li 0.03 Na 0.5 K 0.47 )(Nb 0.92 Sb 0.05 Ta 0.03 )O 3 –xBa <下标> 0.85 Ca <下标> 0.15 Zr <下标> 0.1 Ti 0.9 O 3 (LNKNST –BCZT,x = 0、0.5、1.5、2.5和3.5%)通过常规固态反应方法,通过添加纳米级Ba 0.85 Ca 0.15合成无铅压电陶瓷 Zr 0.1 Ti 0.9 O 3 (BCZT)粉末研究其对晶体结构和电性能的影响。 X射线衍射(XRD)分析表明,所有烧结的LNKNST–BCZT陶瓷均具有纯钙钛矿结构,主要具有菱形(R)相或菱形(R)相和四方(T)相共存。 LNKNST–1.5%BCZT陶瓷的组成位于临界点附近,即,陶瓷从菱形(R)相和四方(T)相共存变为纯菱形(R)相,并呈现出最致密的微观结构形态,可以通过场发射扫描电子显微镜(FESEM)观察进一步确认。 LNKNST–BCZT陶瓷的温度相关介电特性曲线中存在两个介电异常,这与铁电菱形(R)相变为铁电四方(T)相然后变为顺电立方(C)相相关。居里-魏斯定律和幂定律拟合均证实了LNKNST–1.5%BCZT陶瓷的扩散相变铁电特性,这被认为与极性纳米区域(PNR)相关。由于选择的纳米级BCZT掺杂量和R–T多态相界的构造引起的致密化作用,LNKNST–1.5%BCZT陶瓷表现出最佳的铁电和压电性能。复阻抗谱分析证实,高温下的外在导电机理主要是由于烧结过程中碱金属的蒸发所引起的氧空位。

著录项

  • 来源
    《Journal of materials science》 |2018年第6期|4422-4431|共10页
  • 作者单位

    School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University;

    School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University;

    Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University;

    School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University;

    School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University;

    School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University,School of Material Science and Engineering, Jiangsu University;

    Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号