...
首页> 外文期刊>Journal of materials science >Fast and low-temperature sintering of Ag paste due to nanoparticles formed in situ
【24h】

Fast and low-temperature sintering of Ag paste due to nanoparticles formed in situ

机译:由于原位形成纳米颗粒,银浆的快速低温烧结

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sintering of silver is a popular method for forming interconnections in power electronics. Owing to their large size and spherical shape, micron- and submicron-sized Ag particles synthesized by a polyol method (denoted as polyol Ag particles) are not expected to undergo low-temperature, pressureless sintering. However, previous studies have shown sound bonding with shear strength of more than 40 MPa at 200 ℃ with micron and submicron polyol Ag particles. In this work, to understand the bonding mechanism of polyol Ag particles, the sintering behaviors of two Ag pastes, one with polyol Ag particles and another based on hybrid Ag particles consisting of micron-sized Ag flakes and submicron-sized Ag particles, were investigated without any applied pressure at 175 ℃ via transmission electron microscopy. During the sintering process, Ag nanoparticles formed in situ can significantly accelerate the sintering of the Ag paste, resulting in low electrical resistivity of the sintered Ag paste (9.8 × 10~(-6) Ω.cm) after only 5 min of sintering at 175 ℃. The Ag nanoparticles were likely generated from the reduction of residual Ag ions or the Ag complex in the paste. The results were also verified by washing the Ag particles or adding Ag ions into the paste.
机译:银的烧结是在电力电子中形成互连的一种流行方法。由于它们的大尺寸和球形,通过多元醇方法合成的微米和亚微米尺寸的Ag颗粒(表示为多元醇Ag颗粒)不会进行低温无压烧结。然而,先前的研究表明,与微米级和亚微米级多元醇Ag颗粒在200℃时具有超过40 MPa的剪切强度的稳固结合。在这项工作中,为了了解多元醇Ag颗粒的结合机理,研究了两种银浆的烧结行为,一种是与多元醇Ag颗粒,另一种是基于由微米级Ag薄片和亚微米级Ag颗粒组成的混合Ag颗粒的。通过透射电子显微镜在175℃施加任何压力。在烧结过程中,原位形成的Ag纳米粒子可以显着加速Ag糊料的烧结,从而导致在5分钟的烧结时间后,烧结后的Ag糊料的电阻率较低(9.8×10〜(-6)Ω.cm)。 175℃。 Ag纳米颗粒很可能是由糊剂中残留的Ag离子或Ag络合物的减少产生的。还通过洗涤Ag颗粒或将Ag离子添加到浆料中来验证结果。

著录项

  • 来源
    《Journal of materials science》 |2019年第19期|18080-18087|共8页
  • 作者单位

    Department of Adaptive Machine Systems Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan The Institute of Scientific and Industrial Research Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan;

    The Institute of Scientific and Industrial Research Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号