首页> 外文期刊>Journal of Machine Learnig Research >Learning Precise Timing with LSTM Recurrent Networks
【24h】

Learning Precise Timing with LSTM Recurrent Networks

机译:使用LSTM递归网络学习精确定时

获取原文
获取原文并翻译 | 示例

摘要

The temporal distance between events conveys information essential for numerous sequential tasks such as motor control and rhythm detection. While Hidden Markov Models tend to ignore this information, recurrent neural networks (RNNs) can in principle learn to make use of it. We focus on Long Short-Term Memory (LSTM) because it has been shown to outperform other RNNs on tasks involving long time lags. We find that LSTM augmented by "peephole connections" from its internal cells to its multiplicative gates can learn the fine distinction between sequences of spikes spaced either 50 or 49 time steps apart without the help of any short training exemplars. Without external resets or teacher forcing, our LSTM variant also learns to generate stable streams of precisely timed spikes and other highly nonlinear periodic patterns. This makes LSTM a promising approach for tasks that require the accurate measurement or generation of time intervals.
机译:事件之间的时间距离传达了许多连续任务必不可少的信息,例如运动控制和节奏检测。虽然隐马尔可夫模型倾向于忽略此信息,但递归神经网络(RNN)原则上可以学习利用它。我们专注于长期短期记忆(LSTM),因为在涉及长时间滞后的任务上,它已被证明优于其他RNN。我们发现,通过从内部单元到乘法门的“窥孔连接”增强的LSTM可以了解间隔50或49个时间步长的尖峰序列之间的精细区别,而无需任何简短的训练示例。在没有外部复位或教师强迫的情况下,我们的LSTM变体还可以学习生成稳定的,精确定时的尖峰和其他高度非线性的周期性模式的流。这使得LSTM成为需要准确测量或生成时间间隔的任务的有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号