首页> 外文期刊>Journal of logic and computation >Value-based Argumentation Frameworks as Neural-symbolic Learning Systems
【24h】

Value-based Argumentation Frameworks as Neural-symbolic Learning Systems

机译:基于价值的论证框架作为神经符号学习系统

获取原文
获取原文并翻译 | 示例

摘要

While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.
机译:尽管神经网络已成功地用于许多机器学习应用程序中,但逻辑语言已成为表示论证推理的标准。在本文中,我们在相同的论证框架中将推理和学习结合起来,建立了神经网络和论证网络之间的关系。为此,我们提出了一种新的神经论证算法,该算法负责将论证网络转换为标准神经网络。然后,我们显示两个网络之间的对应关系。该算法不仅适用于非循环的论证网络,而且还适用于循环网络,并且可以通过学习以及对论据的并行计算来积累论据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号