首页> 外文期刊>Journal of logic and computation >Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA
【24h】

Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA

机译:模态逻辑中的算法对应和完整性。二。 SQEMA算法的多元和混合扩展

获取原文
获取原文并翻译 | 示例

摘要

In Conradie, Goranko, and Vakarelov (2006, Logical Methods in Computer Science, 2) we introduced a new algorithm, SQEMA, for computing first-order equivalents and proving the canonicity of modal formulae of the basic modal language. Here we extend SQEMA, first to arbitrary and reversive polyadic modal languages, and then to hybrid polyadic languages too. We present the algorithm, illustrate it with some examples, and prove its correctness with respect to local equivalence of the input and output formulae, its completeness with respect to the polyadic inductive formulae introduced in Goranko and Vakarelov (2001, J. Logic. Comput., 11, 737-754) and Goranko and Vakarelov (2006, Ann. Pure. Appl. Logic, 141, 180-217), and the d-persistence (with respect to descriptive frames) of the formulae on which the algorithm succeeds. These results readily expand to completeness with respect to hybrid inductive polyadic formulae and di-persistence (with respect to discrete frames) in hybrid reversive polyadic languages.
机译:在Conradie,Goranko和Vakarelov(2006,计算机科学中的逻辑方法,第2期)中,我们引入了一种新算法SQEMA,用于计算一阶等效项并证明基本模态语言的模态公式的规范性。在这里,我们将SQEMA扩展到任意和可逆的多态语言,然后再扩展到混合多态语言。我们介绍了该算法,并通过一些示例进行了说明,并证明了其在输入和输出公式的局部等价性方面的正确性,在Goranko和Vakarelov(2001,J.Logic.Comput。 ,11,737-754)和Goranko和Vakarelov(2006,Ann。Pure。Appl。Logic,141,180-217),以及算法成功的公式的d-持久性(相对于描述性框架)。这些结果可以很容易地扩展到关于混合归纳多元性公式和完整性(相对于离散框架)的持久性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号