首页> 外文期刊>Journal of logic and computation >Using Temporal Logic to Analyse Temporal Logic: A Hierarchical Approach Based on Intervals
【24h】

Using Temporal Logic to Analyse Temporal Logic: A Hierarchical Approach Based on Intervals

机译:使用时间逻辑分析时间逻辑:一种基于时间间隔的分层方法

获取原文

摘要

Temporal logic has been extensively utilized in academia and industry to formally specify and verify behavioural properties of numerous kinds of hardware and software. We present a novel way to apply temporal logic to the study of a version of itself, namely, propositional linear-time temporal logic (PTL). This involves a hierarchical framework for obtaining standard results for PTL, including a small model property, decision procedures and axiomatic completeness. A large number of the steps involved are expressed in a propositional version of Interval Temporal Logic (ITL) which is referred to as PITL. It is a natural generalization of PTL and includes operators for reasoning about periods of time and sequential composition. Versions of PTL with finite time and infinite time are both considered and one benefit of the framework is the ability to systematically reduce infinite-time reasoning to finite-time reasoning. The treatment of PTL with the operator until and past time naturally reduces to that for PTL without either one. The interval-oriented methodology differs from other analyses of PTL which typically use sets of formulas and sequences of such sets for canonical models. Instead, we represent models as time intervals expressible in PITL. The analysis furthermore relates larger intervals with smaller ones. Being an interval-based formalism, PITL is well suited for sequentially combining and decomposing the relevant formulas. Consequently, we can articulate issues of equal significance in more conventional analyses of PTL but normally only considered at the metalevel. A good example of this is the existence of bounded models with periodic suffixes for PTL formulas which are satisfiable in infinite time. We also describe decision procedures based on binary decision diagrams and exploit some links with finite-state automata. Beyond the specific issues involving PTL, the research is a significant application of ITL and interval-based reasoning and illustrates a general approach to formally reasoning about sequential and parallel behaviour in discrete linear time. The work also includes some interesting representation theorems. In addition, it has relevance to hardware description and verification since the specification languages PSL/Sugar (IEEE Standard 1850) and 'temporal e' (part of IEEE Standard 1647) both contain temporal constructs concerning intervals of time as does the related SystemVerilog Assertion language contained in SystemVerilog (IEEE Standard 1800), an extension of the IEEE 1364-2001 Verilog language.
机译:时间逻辑已在学术界和工业界广泛使用,以正式指定和验证多种硬件和软件的行为特性。我们提出了一种将时态逻辑应用于自身版本研究的新颖方法,即命题线性时间时态逻辑(PTL)。这涉及用于获取PTL标准结果的分层框架,包括小模型属性,决策程序和公理完整性。所涉及的大量步骤以间隔时间逻辑(ITL)的命题形式表示,称为PITL。这是PTL的自然概括,包括用于推理时间段和顺序组成的运算符。都考虑了具有有限时间和无限时间的PTL版本,该框架的好处之一是能够将无限时间推理系统化为有限时间推理。运营商直到现在和过去的时间对PTL的处理自然会减少到没有任何一个的PTL的处理。面向间隔的方法与其他PTL分析不同,PTL通常将公式集和此类集的序列用于规范模型。相反,我们将模型表示为PITL中可表示的时间间隔。该分析进一步将较大的间隔与较小的间隔相关联。作为基于间隔的形式主义,PITL非常适合顺序组合和分解相关公式。因此,我们可以在更常规的PTL分析中阐明同样重要的问题,但通常仅在元级别上考虑。一个很好的例子是存在带周期后缀的PTL公式的有界模型,该模型在无限时间内可以满足。我们还描述了基于二进制决策图的决策程序,并利用有限状态自动机开发了一些链接。除了涉及PTL的特定问题外,该研究是ITL和基于间隔的推理的重要应用,并说明了在离散线性时间内正式推理顺序和并行行为的一般方法。该工作还包括一些有趣的表示定理。此外,由于规范语言PSL / Sugar(IEEE标准1850)和“ temporal e”(IEEE标准1647的一部分)都包含与时间间隔有关的时间构造,因此它与硬件描述和验证也相关,相关的SystemVerilog断言语言也是如此。包含在SystemVerilog(IEEE标准1800)中,它是IEEE 1364-2001 Verilog语言的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号