首页> 外文期刊>Journal of logic and computation >Generating Kolmogorov random strings from sources with limited independence
【24h】

Generating Kolmogorov random strings from sources with limited independence

机译:从独立性有限的来源生成Kolmogorov随机字符串

获取原文
获取原文并翻译 | 示例

摘要

We study whether randomness can be extracted from two strings that are only partially random and only partially independent, where randomness is taken in the sense of Kolmogorov complexity and the dependency of strings x and v is given by dep(x,y) = C(x) + C(y) - C(xy) (C(x) denotes the Kolmogorov complexity of x). The general setting is that the input of the extraction procedure consists of two strings x and y of length n, each having Kolmogorov complexity at least s(n) and dependency at most α(n). It is shown that there exists a computable function that, from two such strings x and v, extracts ≈2s(n) random bits that have Kolmogorov complexity ≈2s(n)-α(n) (so the output is α(n) close to being random). It is also shown that (a) it is possible to extract ≈s(n)/2 bits that are α(n) close to being random even conditioned by any one of x or v, and (b) it is possible to construct polynomially many strings of length ≈s(n)/3 that are pairwise α(n) close to being random and also α(n) close to random conditioned by any one of x and y. A polynomial-time extraction procedure exists for the case when x and y have linear Kolmogorov complexity (i.e. C(x) > Sn and C(y) > Sn, for a constant δ > 0). However, the output is only poly(α(n)+log n) close to random.
机译:我们研究是否可以从仅部分随机且仅部分独立的两个字符串中提取随机性,其中从Kolmogorov复杂度的意义上讲是随机性,而字符串x和v的相关性由dep(x,y)= C( x)+ C(y)-C(xy)(C(x)表示x的Kolmogorov复杂度)。一般设置是,提取过程的输入由长度为n的两个字符串x和y组成,每个字符串的Kolmogorov复杂度至少为s(n),依赖性最多为α(n)。结果表明,存在一个可计算的函数,该函数从两个这样的字符串x和v中提取≈2s(n)个随机比特,这些比特具有Kolmogorov复杂度≈2s(n)-α(n)(因此输出为α(n)几乎是随机的)。还表明(a)可以提取≈s(n)/ 2位,其中α(n)接近随机甚至由x或v中的任何一个条件,并且(b)可以构造在多项式中,许多长度为≈s(n)/ 3的字符串,成对的α(n)接近于随机,并且也受x和y中的任何一个条件接近于随机的α(n)。对于x和y具有线性Kolmogorov复杂度(即C(x)> Sn和C(y)> Sn,常数δ> 0)的情况,存在多项式时间提取程序。但是,输出仅是接近随机的poly(α(n)+ log n)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号