首页> 外文期刊>Journal of logic and computation >A semantic proof of strong cut-admissibility for first-order Godel logic
【24h】

A semantic proof of strong cut-admissibility for first-order Godel logic

机译:一阶Godel逻辑的强可割性的语义证明

获取原文
获取原文并翻译 | 示例

摘要

We provide a constructive direct semantic proof of the completeness of the cut-free part of the hypersequent calculus HIF for the standard first-order Godel logic (thereby proving both completeness of the calculus for its standard semantics, and the admissibility of the cut rule in the full calculus). The results also apply to derivations from assumptions (or 'non-logical axioms'), showing in particular that when the set of assumptions is closed under substitutions, then cuts can be confined to formulas occurring in the assumptions. The methods and results are then extended to handle the (Baaz) Delta connective as well.
机译:我们为标准一阶Godel逻辑提供了超序列微积分HIF的无割部分的完整性的建设性直接语义证明(从而证明了微积分的标准语义的完整性以及在中的割规则的可容许性完整的演算)。该结果还适用于假设(或“非逻辑公理”)的推导,特别表明,当假设集合在替代条件下封闭时,则可将切割限制为假设中出现的公式。然后将方法和结果扩展到也可以处理(Baaz)Delta连接词。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号