首页> 外文期刊>Journal of Logic and Algebraic Programming >A calculational approach to path-based properties of the Eisenstein-Stern and Stern-Brocot trees via matrix algebra
【24h】

A calculational approach to path-based properties of the Eisenstein-Stern and Stern-Brocot trees via matrix algebra

机译:基于矩阵代数的爱森斯坦-斯特恩树和斯特恩-布罗科树基于路径的属性的计算方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a calculational approach to prove properties of two well-known binary trees used to enumerate the rational numbers: the Stern-Brocot tree and the Eisenstein-Stern tree (also known as Calkin-Wilf tree). The calculational style of reasoning is enabled by a matrix formulation that is well-suited to naturally formulate path-based properties, since it provides a natural way to refer to paths in the trees.
机译:本文提出了一种计算方法,以证明用于枚举有理数的两个著名的二叉树:Stern-Brocot树和Eisenstein-Stern树(也称为Calkin-Wilf树)的性质。推理的计算风格由矩阵公式实现,该矩阵公式非常适合自然地制定基于路径的属性,因为它提供了一种自然的方式来引用树中的路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号