首页> 外文期刊>The Journal of logic and algebraic programming >An experience in using machine learning for short-term predictions in smart transportation systems
【24h】

An experience in using machine learning for short-term predictions in smart transportation systems

机译:使用机器学习进行智能交通系统短期预测的经验

获取原文
获取原文并翻译 | 示例

摘要

Bike-sharing systems (BSS) are a means of smart transportation with the benefit of a positive impact on urban mobility. To improve the satisfaction of a user of a BSS, it is useful to inform her/him on the status of the stations at run time, and indeed most of the current systems provide the information in terms of number of bicycles parked in each docking stations by means of services available via web. However, when the departure station is empty, the user could also be happy to know how the situation will evolve and, in particular, if a bike is going to arrive (and vice versa when the arrival station is full). To fulfill this expectation, we envisage services able to make a prediction and infer if there is in use a bike that could be, with high probability, returned at the station where she/he is waiting. The goal of this paper is hence to analyze the feasibility of these services. To this end, we put forward the idea of using Machine Learning methodologies, proposing and comparing different solutions. (C) 2016 Elsevier Inc. All rights reserved.
机译:自行车共享系统(BSS)是一种智能交通方式,对城市出行产生积极影响。为了提高BSS用户的满意度,在运行时告知其站台状态非常有用,实际上,当前大多数系统都提供了有关每个坞站中停放的自行车数量的信息。通过网络提供的服务。但是,当出发站是空的时,用户也可能很高兴知道情况将如何发展,特别是如果自行车要到达(反之亦然,当到达站已满时)。为了实现这一期望,我们设想可以进行预测的服务,并推断是否正在使用自行车,而该自行车很有可能在她/他正在等待的车站退回。因此,本文的目的是分析这些服务的可行性。为此,我们提出了使用机器学习方法的思想,提出并比较了不同的解决方案。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号