首页> 外文期刊>Journal of irrigation and drainage engineering >Discussion of 'Hydraulic Characteristics of Flow over Sinusoidal Sharp-Crested Weirs' by Zahra Oreizi, Manouchehr Heidarpour, and Sara Bagheri
【24h】

Discussion of 'Hydraulic Characteristics of Flow over Sinusoidal Sharp-Crested Weirs' by Zahra Oreizi, Manouchehr Heidarpour, and Sara Bagheri

机译:Zahra Oreizi,Manouchehr Heidarpour和Sara Bagheri对“正弦尖峰堰上的水力特性”的讨论

获取原文
获取原文并翻译 | 示例
           

摘要

The discusser would like to thank the authors for introducing a sharp-crested weir with sinusoidal walls. The discusser, however, would like to add a few points. The proposed model by the authors produces the following equation for computing theoretical discharge, Q_t: Q_t = (2g)~(1/2) ∫_0~(h_1) (h_1-y)~(1/2)[b_1 + 2b_2 sin(2πny/D)]dy (1) where h_1 = upstream head over the weir crest; b_1 = crest width; b_2 = amplitude of the sine function (0 ≤ b_2/b_1 ≤ 0.5); g = gravitational acceleration; n = cycle number of the sine function; and D = weir-notch height. Assuming y = h_1t, Eq. (1) takes the form Q_t = h_1(2gh_1)~(1/2) ∫_0~1 (1-t)~(1/2)[b_1 + 2b_2 sin(2πnh_1t/D)]dt (2) where t = nondimensional lump variable. Because b_1 ≠ 0, Q_t=2b_1h_1(2gh_1)~(1/2)[1/3+k∫_0~1(1-t)~(1/2)sin(ηt)dt](3) where k = b_2/b_1; and η = 2πnh_1/D. Eq. (3) can be expressed in terms of Fresnel integrals as Q_t = 2b_1h_1(2gh_1)~(1/2){1/3+k/η-k/(η~(3/2))(π/2)~(1/2)[cos(η)FresnelC((2η/π)~(1/2)) + sin (η)FresnelS((2η/π)~(1/2))(4) Eliminating Fresnel integrals yields Q_t = 2b_1h_1(2gh_1)~(1/2)(1/3+k/η)(5) The percentage deviation of Eq. (5) compared with that of Eq. (3) is PD = 100 ×[ 1-(1/3+k/η)/(1/3+k∫_0~1(1-t)~(1/2)sin(ηt)dt)](6) For the weir under investigation, the cycle number, n, is equal to one; thus, 0 ≤ η ≤ 2tt. Eq. (6) is depicted in Fig. 1 for different values of k. For k = 0 (rectangular weir), there is no deviation between Eqs. (5) and (3), but for other k values the deviation is considerable, especially for η ≤ 2.297. Thus, in general Fresnel integrals cannot be eliminated from the theoretical discharge equation [Eq. (4)]. Based on Fig. 1, the generality of Eq. (5) is questionable.
机译:讨论者要感谢作者介绍了带有正弦波壁的尖顶堰。但是,讨论者想补充几点。作者提出的模型产生了以下公式,用于计算理论流量Q_t:Q_t =(2g)〜(1/2)∫_0〜(h_1)(h_1-y)〜(1/2)[b_1 + 2b_2 sin (2πny/ D)] dy(1)其中h_1 =堰顶的上游水头; b_1 =波峰宽度; b_2 =正弦函数的幅度(0≤b_2 / b_1≤0.5); g =重力加速度; n =正弦函数的循环数; D =堰口高度。假设y = h_1t, (1)的形式为Q_t = h_1(2gh_1)〜(1/2)∫_0〜1(1-t)〜(1/2)[b_1 + 2b_2 sin(2πnh_1t/ D)] dt(2)其中t =无量纲总变量。因为b_1≠0,Q_t = 2b_1h_1(2gh_1)〜(1/2)[1/3 +k∫_0〜1(1-t)〜(1/2)sin(ηt)dt](3)其中k = b_2 / b_1;且η=2πnh_1/ D。等式(3)可以用菲涅尔积分表示为Q_t = 2b_1h_1(2gh_1)〜(1/2){1/3 + k /η-k/(η〜(3/2))(π/ 2)〜 (1/2)[cos(η)FresnelC((2η/π)〜(1/2))+ sin(η)FresnelS((2η/π)〜(1/2))(4)消除菲涅尔积分Q_t = 2b_1h_1(2gh_1)〜(1/2)(1/3 + k /η)(5) (5)与等式相比。 (3)是PD = 100×[1-(1/3 + k /η)/(1/3 +k∫_0〜1(1-t)〜(1/2)sin(ηt)dt)]( 6)对于被测堰,循环数n等于1;因此,0≤η≤2tt。等式对于不同的k值,图1中描述了(6)。对于k = 0(矩形堰),方程之间没有偏差。 (5)和(3),但是对于其他k值,偏差是相当大的,特别是对于η≤2.297。因此,通常不能从理论放电方程中消除菲涅尔积分。 (4)]。基于图1,方程的一般性。 (5)值得商.。

著录项

  • 来源
    《Journal of irrigation and drainage engineering》 |2016年第1期|07015031.1-07015031.2|共2页
  • 作者

    Ali R. Vatankhah;

  • 作者单位

    Dept. of Irrigation and Reclamation Engineering, Univ. College of Agriculture and Natural Resources, Univ. of Tehran, P.O. Box 4111, Karaj, 3158777871 Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号