...
首页> 外文期刊>Journal of irrigation and drainage engineering >Discussion of 'Discharge Coefficient of Circular-Crested Weirs Based on a Combination of Flow around a Cylinder and Circulation' by Abdorreza Kabiri-Samani and Sara Bagheri
【24h】

Discussion of 'Discharge Coefficient of Circular-Crested Weirs Based on a Combination of Flow around a Cylinder and Circulation' by Abdorreza Kabiri-Samani and Sara Bagheri

机译:Abdorreza Kabiri-Samani和Sara Bagheri讨论了“基于绕圆柱体流动和循环的组合的圆顶堰的排放系数”

获取原文
获取原文并翻译 | 示例
           

摘要

Based on a combination of flow around a cylinder and circulation, the authors of the original paper derived Eqs. (1) and (2) for the discharge coefficient C_d and crest-sectional velocity distribution of circular-crested weirs where K' = -O.14(H_1/R_b)~(-1.46) + 0.056; H_1 = total upstream head; R_b = radius of circular-crested weir; Rs = free-surface streamline radius; r = radial coordinate measured from the crest center; u = velocity at depth y; and g = gravitational acceleration. Assuming a concentric streamline over the weir crest, they estimated R_s and r as R_s=R_b + Y_2 (3) r = R_b+y (4) where Y_2 = crest flow depth (0.7H_1). Based on the theoretical and experimental analysis of Mohammadzadeh-Habili and Heidarpour (2013), the streamlines over the crest surface of a circular-crested weir (Fig. 1) are not concentric, and Eqs. (3) and (4) incorrectly estimate the values of R_s and r. For flow past circular-crested weir, R_s and r can respectively estimated as (Jaeger 1956) R_s =R_b + mY_2 (5) r = R_b + my (6) where m = experimental parameter. R_s and therefore m can be estimated from the measured water-surface data over the circular crested weir. Defining x and y as the horizontal and vertical axes, respectively, passing through the top point of the weir crest, the functional representation of the free-surface streamline passed over the weir crest surface can be expressed as y=f(x) (7) Using the Eq. (7), the free-surface streamline radius Rs can be estimated as (8) where f'(0) and f"(0) are the first and second derivatives, respectively, of f(x) at x = 0. To estimate R_s, the measured water-surface data of a circular-crested weir is taken from Vo (1992). A polynomial equation is fit to the water-surface data of the each test, and R_s is then estimated from Eq. (8). Replacing the values of R_b, Y_2, and R_s into Eq. (5), m is estimated and the results are then presented against HJR_b (Fig. 2).
机译:基于圆柱体周围的流动和循环的结合,原始论文的作者得出了方程。 (1)和(2)为圆顶堰的出水系数C_d和波峰截面速度分布,其中K'= -O.14(H_1 / R_b)〜(-1.46)+ 0.056; H_1 =总上游水头; R_b =圆顶堰的半径; Rs =自由表面流线半径; r =从波峰中心测得的径向坐标; u =深度y处的速度; g =重力加速度。假设堰顶上有一条同心的流线,他们估计R_s和r为R_s = R_b + Y_2(3)r = R_b + y(4),其中Y_2 =顶流深度(0.7H_1)。根据Mohammadzadeh-Habili和Heidarpour(2013)的理论和实验分析,圆顶堰的顶面流线(图1)不是同心的,等式。 (3)和(4)错误地估计了R_s和r的值。对于通过圆顶堰的流量,R_s和r可以分别估算为(Jaeger 1956)R_s = R_b + mY_2(5)r = R_b + my(6)其中m =实验参数。 R_s和m可以从圆顶堰上测得的水面数据中估算出来。将x和y分别定义为穿过堰顶的水平轴和垂直轴,通过堰顶表面的自由表面流线的功能表示可以表示为y = f(x)(7 )使用等式。 (7),自由表面流线半径Rs可以估计为(8),其中f'(0)和f“(0)分别是x = 0时f(x)的一阶和二阶导数。估计R_s,测得的圆顶堰的水面数据取自Vo(1992),多项式方程拟合每个试验的水面数据,然后由等式(8)估计R_s将R_b,Y_2和R_s的值代入公式(5),估计m,然后将结果针对HJR_b进行表示(图2)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号