首页> 外文期刊>Journal of intelligent material systems and structures >Asymmetric Bouc-Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm-based particle swarm optimization identification algorithm
【24h】

Asymmetric Bouc-Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm-based particle swarm optimization identification algorithm

机译:基于遗传算法的粒子群优化辨识算法的压电执行器非对称Bouc-Wen滞后建模与逆补偿

获取原文
获取原文并翻译 | 示例

摘要

The hysteresis characteristics, which commonly existed in smart materials-based actuators, play a significant role in precision control technology. In this article, a modified Bouc-Wen model which can describe the asymmetric hysteresis characteristics of piezoelectric ceramic actuators is investigated. The corresponding parameters of the modified Bouc-Wen hysteresis model are identified through a genetic algorithm-based particle swarm optimization algorithm. Compared with independent particle swarm optimization method which is easily trapped in the local extremum, the proposed genetic algorithm-based particle swarm optimization features the strong searching ability both in early global search period and the later local search period. The experimental results show that the asymmetric Bouc-Wen model identified via genetic algorithm-based particle swarm optimization algorithm are more accurate than that identified through independent particle swarm optimization or genetic algorithm approach, and the maximum displacement error and the maximum relative error between the genetic algorithm-based particle swarm optimization model and the experimental value are 0.20 mu m and 14.28%, respectively, which are much smaller than that of particle swarm optimization method with 0.67 mu m and 47.85% and genetic algorithm method with 0.35 mu m and 25%. In order to further verify the accuracy of the identified model, the hysteresis compensation of piezoelectric ceramic actuator was realized using the feedforward controller based on the inverse Bouc-Wen model.
机译:在基于智能材料的执行器中通常存在的磁滞特性在精密控制技术中起着重要作用。在本文中,研究了可以描述压电陶瓷致动器非对称磁滞特性的改进的Bouc-Wen模型。通过基于遗传算法的粒子群优化算法确定修正的Bouc-Wen磁滞模型的相应参数。与容易陷入局部极值的独立粒子群优化算法相比,基于遗传算法的粒子群优化算法在全局搜索初期和局部搜索后期均具有较强的搜索能力。实验结果表明,通过基于遗传算法的粒子群优化算法识别的非对称Bouc-Wen模型比通过独立粒子群优化或遗传算法方法识别的非对称Bouc-Wen模型更准确,遗传之间的最大位移误差和最大相对误差基于算法的粒子群优化模型和实验值分别为0.20μm和14.28%,远小于粒子群优化方法的0.67μm和47.85%以及遗传算法方法的0.35μm和25% 。为了进一步验证所识别模型的准确性,使用基于逆Bouc-Wen模型的前馈控制器实现了压电陶瓷执行器的磁滞补偿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号