首页> 外文期刊>Journal of intelligent material systems and structures >Electro-Mechanical Impedance-Based Wireless Structural Health Monitoring Using PCA-Data Compression and k-means Clustering Algorithms
【24h】

Electro-Mechanical Impedance-Based Wireless Structural Health Monitoring Using PCA-Data Compression and k-means Clustering Algorithms

机译:使用PCA数据压缩和k均值聚类算法的基于机电阻抗的无线结构健康监测

获取原文
获取原文并翻译 | 示例

摘要

This article presents a practical method for an electro-mechanical impedance-based wireless structural health monitoring (SHM), which incorporates the principal component analysis (PCA)-based data compression and k-means clustering-based pattern recognition. An on-board active sensor system, which consists of a miniaturized impedance measuring chip (AD5933) and a self-sensing macro-fiber composite (MFC) patch, is utilized as a next-generation toolkit of the electromechanical impedance-based SHM system. The PCA algorithm is applied to the raw impedance data obtained from the MFC patch to enhance a local data analysis-capability of the on-board active sensor system, maintaining the essential vibration characteristics and eliminating the unwanted noises through the data compression. Then, the root-mean square-deviation (RMSD)-based damage detection result using the PCA-compressed impedances is compared with the result obtained from the raw impedance data without the PCA preprocessing. Furthermore, the k-means clustering-based unsupervised pattern recognition, employing only two principal components, is implemented. The effectiveness of the proposed methods for a practical use of the electromechanical impedance-based wireless SHM is verified through an experimental study consisting of inspecting loose bolts in a bolt-jointed aluminum structure.
机译:本文提出了一种基于机电阻抗的无线结构健康监测(SHM)的实用方法,该方法结合了基于主成分分析(PCA)的数据压缩和基于k均值聚类的模式识别。机载有源传感器系统由微型阻抗测量芯片(AD5933)和自感应宏纤维复合材料(MFC)贴片组成,被用作基于机电阻抗的SHM系统的下一代工具包。 PCA算法应用于从MFC贴片获得的原始阻抗数据,以增强车载有源传感器系统的本地数据分析能力,保持必要的振动特性并通过数据压缩消除不必要的噪声。然后,将使用PCA压缩阻抗的基于均方根偏差(RMSD)的损伤检测结果与未经PCA预处理的原始阻抗数据获得的结果进行比较。此外,实现了仅使用两个主要成分的基于k均值聚类的无监督模式识别。通过对包括螺栓连接的铝结构中的松散螺栓进行检查的实验研究,验证了所提出方法在基于机电阻抗的无线SHM的实际应用中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号