首页> 外文期刊>Journal of intelligent material systems and structures >Application of statistical monitoring using latent-variable techniques for detection of faults in sensor networks
【24h】

Application of statistical monitoring using latent-variable techniques for detection of faults in sensor networks

机译:使用潜变量技术的统计监视在传感器网络故障检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

The ability of using measurements collected through a sensor network for detecting and locating damage via structural health monitoring algorithms relies on accurate sensor measurements from the deployed sensor network, and therefore, it can be affected by the presence of malfunctioning and/or faulty sensors. In this article, three sensor fault detection and identification techniques based on statistical monitoring, using latent-variable techniques, were implemented, evaluated, and compared with respect to their capability to detect and identify faulty sensors using case studies from an analytical three-dimensional truss and from an actual cable-supported bridge in the metropolitan Los Angeles, California region. It is shown that the leading sensor fault detection algorithms are effective in detecting certain classes of sensor failure mechanisms but are of limited utility when dealing with representative types of sensor faults encountered in typical structural health monitoring of civil infrastructure systems.
机译:使用通过传感器网络收集的测量值以通过结构健康监视算法检测和定位损坏的能力取决于来自部署的传感器网络的准确传感器测量值,因此,传感器故障和/或故障的存在可能会影响它。在本文中,对三种基于统计监视的传感器故障检测和识别技术(使用潜在变量技术)进行了实施,评估,并使用了来自分析性三维桁架的案例研究,比较了它们检测和识别故障传感器的能力。并从加利福尼亚州大都会洛杉矶地区的一座实际的电缆支撑桥中提取。结果表明,领先的传感器故障检测算法可以有效地检测某些类型的传感器故障机制,但在处理典型的民用基础设施系统健康监测中遇到的代表性类型的传感器故障时,其用途有限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号