首页> 外文期刊>Journal of intelligent material systems and structures >Layout design of piezoelectric patches in structural linear quadratic regulator optimal control using topology optimization
【24h】

Layout design of piezoelectric patches in structural linear quadratic regulator optimal control using topology optimization

机译:基于拓扑优化的结构线性二次调节器最优控制中压电片的布局设计

获取原文
获取原文并翻译 | 示例

摘要

This article investigates topology optimization for piezoelectric thin-shell structures under the linear quadratic regulator optimal control. In the optimization model, the structural dynamic compliance is taken as the measure of control performance, and the relative densities describing the distribution of the piezoelectric material are considered as design variables. An artificial material model with penalization on both mechanical and piezoelectric properties is employed. For the purpose of improving computational efficiency of the sensitivity and response analysis, modal superposition method is adopted. The derivative of the Riccati equation governing the linear quadratic regulator control with respect to the design variables is shown to be a Lyapunov equation. In conjunction with the adjoint variable method, the design sensitivities of the dynamic compliance are obtained using the solution of the Lyapunov equation. Numerical examples demonstrate the validity of the proposed method and show the significance of layout design of piezoelectric sensors/actuators. The influences of some key factors on the optimization solutions are discussed. It is shown that the optimized layout of the piezoelectric patches may be significantly influenced by the excitation frequency, but only slightly affected by the choice of the weighting matrix in the linear quadratic regulator control. This work aims to provide an efficient gradient-based mathematical programming method for guiding the layout design of actuators and sensors in smart structures under optimal vibration control. However, the considered model is a purely mathematical one without consideration of engineering realization, thus the optimization result may only serve as an upper bound for practically realizable control performance.
机译:本文研究了线性二次调节器最优控制下压电薄壳结构的拓扑优化。在优化模型中,将结构动态柔度作为控制性能的量度,并将描述压电材料分布的相对密度视为设计变量。采用了在机械和压电性能上均受损失的人工材料模型。为了提高灵敏度和响应分析的计算效率,采用了模态叠加法。关于设计变量,控制线性二次调节器控制的Riccati方程的导数显示为Lyapunov方程。结合伴随变量方法,使用Lyapunov方程的解获得了动态柔量的设计灵敏度。数值算例表明了该方法的有效性,并说明了压电传感器/执行器布局设计的重要性。讨论了一些关键因素对优化解决方案的影响。结果表明,压电贴片的优化布局可能会受到激励频率的显着影响,而在线性二次调节器控制中,加权矩阵的选择只会稍有影响。这项工作旨在提供一种基于梯度的高效数学编程方法,以指导智能结构中最优振动控制下的执行器和传感器的布局设计。然而,所考虑的模型是纯数学模型,而不考虑工程实现,因此,优化结果只能作为可实际实现的控制性能的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号