首页> 外文期刊>Journal of Information Science >Blind Date recommender: A context-aware ontology-based dating recommendation platform
【24h】

Blind Date recommender: A context-aware ontology-based dating recommendation platform

机译:盲人约会推荐器:基于上下文感知的本体的约会推荐平台

获取原文
获取原文并翻译 | 示例

摘要

Online dating sites have become popular platforms for those individuals who utilise the Internet to develop a personal or romantic relationship. Unlike typical recommenders systems, which attempt to suggest items such as films, songs, books and so on. According to a user's interests, dating recommender systems provide services that people can use to find potential romantic partners. Since these services have a higher expectancy of users, online dating sites are considering the introduction of recommender systems in order to build an improved dating network. Different kinds of techniques based on content-based, collaborative filtering or hybrid techniques exist. In this article, we introduce BlindDate recommender, a context-based platform that utilises semantic technologies to describe users' preferences more precisely. We utilise DBPedia repositories to obtain information that is subsequently used to enrich a previously generated ontology model. The instances inserted into the ontology enable the matching algorithms that we have generated to identify potential matches between users. In order to validate the performance of the platform, we utilise a real-world data set that has produced relevant results enhancing the accuracy compared with other well-known approaches and identifying the discriminant parameters used in the dating domain. More specifically, the proposed approach attains 0.79, 0.8 and 0.55 in the I-Precision, I-Recall and I-F-measure, respectively, when employed in separate topics.
机译:对于那些利用互联网发展个人关系或浪漫关系的个人,在线约会网站已成为流行的平台。与典型的推荐系统不同,典型的推荐系统尝试推荐诸如电影,歌曲,书籍等内容。根据用户的兴趣,约会推荐系统提供人们可以用来寻找潜在的浪漫伴侣的服务。由于这些服务对用户的期望更高,因此在线约会网站正在考虑引入推荐系统,以建立一个改进的约会网络。存在基于基于内容的协作过滤或混合技术的不同种类的技术。在本文中,我们介绍BlindDate推荐器,这是一个基于上下文的平台,该平台利用语义技术来更精确地描述用户的偏好。我们利用DBPedia存储库来获取信息,这些信息随后可用于丰富先前生成的本体模型。插入到本体中的实例使我们生成的匹配算法可以识别用户之间的潜在匹配。为了验证平台的性能,我们利用了一个真实的数据集,该数据集产生了与其他知名方法相比提高了准确性的相关结果,并确定了约会领域中使用的判别参数。更具体地说,当在单独的主题中使用时,所提出的方法在I精度,I回忆和I-F度量中分别达到0.79、0.8和0.55。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号