首页> 外文期刊>Journal of information science and engineering >A Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Streams
【24h】

A Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Streams

机译:一种用于在线数据流中查找最近的频繁项目集的滑动窗口方法

获取原文
获取原文并翻译 | 示例

摘要

A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Consequently, the knowledge embedded in a data stream is likely to be changed as time goes by. However, most of mining algorithms or frequency approximation algorithms for a data stream do not able to extract the recent change of information in a data stream adaptively. This paper proposes a sliding window method of finding recently frequent itemsets over an online data stream. The size of a window defines a desired life-time of the information of a transaction in a data stream.
机译:数据流是连续快速生成的大量无界数据元素序列。因此,随着时间的流逝,嵌入在数据流中的知识可能会发生变化。然而,大多数用于数据流的挖掘算法或频率近似算法不能自适应地提取数据流中信息的最新变化。本文提出了一种滑动窗口方法,用于在在线数据流上查找最近频繁使用的项目集。窗口的大小定义了数据流中交易信息的期望寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号