首页> 外文期刊>Journal of information science and engineering >Route Pattern Mining From Personal Trajectory Data
【24h】

Route Pattern Mining From Personal Trajectory Data

机译:从个人轨迹数据挖掘路线模式

获取原文
获取原文并翻译 | 示例

摘要

The discovery of route patterns from trajectory data generated by moving objects is an essential problem for location-aware computing. However, the high degree of uncertainty of personal trajectory data significantly disturbs the existing route pattern mining approaches, and results in finding only short and incomplete patterns with high computational complexity. In this paper, we propose a personal trajectory data mining framework, which includes a group-and-partition trajectory abstraction technique and a frequent pattern mining algorithm called SCPM (Spatial Continuity based Pattern Mining). The group-and-partition technique can discover common sub-segments which are used to abstract the original trajectory data. The SCPM algorithm can efficiently derive longer and more complete route patterns from the abstracted personal trajectory data by tolerating various kinds of disturbances during the trips. Based on the real-world personal trajectory data, we conducted a number of experiments to evaluate the performance of our framework. The experimental results demonstrate that our framework is more efficient and effective as compared with the existing route pattern mining approaches, and the extracted route patterns can be effectively utilized to predict users' future route.
机译:从移动物体产生的轨迹数据中发现路径模式是位置感知计算的基本问题。然而,个人轨迹数据的高度不确定性极大地干扰了现有的路线模式挖掘方法,并导致仅找到具有高计算复杂度的短且不完整的模式。在本文中,我们提出了一种个人轨迹数据挖掘框架,该框架包括组和分区轨迹抽象技术以及一种称为SCPM(基于空间连续性的模式挖掘)的频繁模式挖掘算法。分组分割技术可以发现用于提取原始轨迹数据的公共子段。通过容忍旅途中的各种干扰,SCPM算法可以从抽象的个人轨迹数据中有效地得出更长,更完整的路线模式。基于现实世界中的个人轨迹数据,我们进行了许多实验来评估我们框架的性能。实验结果表明,与现有的路由模式挖掘方法相比,我们的框架更有效,更有效,提取的路由模式可以有效地用于预测用户的未来路由。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号