首页> 外文期刊>Journal of information and computational science >An Improved Particle Swarm Optimization Algorithm Based K-means Clustering Analysis
【24h】

An Improved Particle Swarm Optimization Algorithm Based K-means Clustering Analysis

机译:基于K-均值聚类分析的改进粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

The improved Particle Swarm Optimization (PSO) algorithm is proposed to optimize the K-means clustering analysis problem in this study. The improved PSO algorithm aimed to prevent the convergence premature and to get more quickly convergence velocity in the optimization clustering process. Due to the clustering characteristics of the K-means based PSO, a new adjustable searching strategy of PSO is presented firstly. Subsequently, a fitness function is denned to guide the searching procedure to enhance the accuhave been undertaken with a test bench of synthetic and real life datasets. The results reflect the superiority of the proposed algorithm in terms of accuracy, convergence speed and robustness.
机译:提出了一种改进的粒子群算法(PSO)来优化K均值聚类分析问题。改进的PSO算法旨在防止收敛过早,并在优化聚类过程中更快地获得收敛速度。由于基于K均值的PSO的聚类特性,首先提出了一种新的可调式PSO搜索策略。随后,确定适应度函数以指导搜索过程,以增强合成和现实数据集的测试平台所进行的计算。结果反映了所提算法在准确性,收敛速度和鲁棒性方面的优越性。

著录项

  • 来源
    《Journal of information and computational science》 |2010年第2期|P.511-518|共8页
  • 作者

    Benzheng Wei; rnZhimin Zhao;

  • 作者单位

    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China College of Science and Engineering, Shandong University of Traditional Chinese Medicine Jinan 250355, China;

    rnCollege of ScienceNanjing University of Aeronautics and Astronautics Nanjing 210016, China CSIRO Division of Materials Science and Engineering, PO Box 56, Highett Victoria 3190, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    clustering analysis; k-means; particle swarm optimization; fitness function;

    机译:聚类分析;k均值粒子群优化;健身功能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号