首页> 外文期刊>Journal of information and computational science >Wavelet De-noising Algorithm for NMR Logging Application
【24h】

Wavelet De-noising Algorithm for NMR Logging Application

机译:小波降噪算法在核磁共振测井中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a wavelet de-noising algorithm is proposed to reduce the noise from Nuclear Magnetic Resonance (NMR) logging signal based on the analysis of its application characteristics. In addition to its low computational requirements, this approach has many other theoretical advantages in NMR logging. NMR logging signals in the wavelet domain are concentrated in a few coefficients while the noise is well distributed. Performing a thresholding method in the wavelet domain can significantly enhance the signal. A comparison with other NMR logging de-nosing technique shows that this method has a superior performance. The Signal-to-Noise Ratio (SNR) and Root Mean Square Error (RMSE) are used as the quality metrics to study the performance of the proposed method. Simulations and experiments both confirm the theoretical expectations.
机译:本文在分析其应用特性的基础上,提出了一种小波降噪算法,以减少核磁共振测井信号的噪声。除了计算量低之外,这种方法在NMR测井中还具有许多其他理论优势。小波域中的NMR测井信号集中在几个系数中,而噪声分布均匀。在小波域中执行阈值化方法可以显着增强信号。与其他NMR测井除噪技术的比较表明,该方法具有优越的性能。以信噪比(SNR)和均方根误差(RMSE)作为质量指标来研究所提出方法的性能。仿真和实验均证实了理论预期。

著录项

  • 来源
    《Journal of information and computational science》 |2011年第5期|p.747-754|共8页
  • 作者

    Lei Wu; Li Kong; Jingjing Cheng;

  • 作者单位

    Department of Control Science and Engineering, Huazhong University of Science and Technology Wuhan 430074, China;

    Department of Control Science and Engineering, Huazhong University of Science and Technology Wuhan 430074, China;

    Department of Control Science and Engineering, Huazhong University of Science and Technology Wuhan 430074, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    wavelet de-noising; nmr logging; threshholding; snr; rmse;

    机译:小波去噪NMR日志记录;阈值snr;rmse;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号